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Abstract

By adding reflexion to the chemical machine of Berry and

Boudol, we obtain a formal model of concurrency that is con-

sistent with mobility and distribution. Our model provides

the foundations of a programming language with functional

and object-oriented features. It can also be seen as a process

calculus, the join-calculus, which we prove equivalent to the

w-calculus of Milner, Parrow and Walker.

1 Introduction

There is a mismatch between calculi for concurrent processes

and languages for programming distributed and mobile sys-

tems. Calculi such as CCS or the ~-calculus [16, 19] intro-

duce a small number of constructs, and have a thoroughly

studied metatheory. However, they are mostly based on

atomic non-local interaction (typically reruiez-vous), which

is difficult to implement fully in a distributed setting. Pro-

gramming languages such as Actors [1] or Obliq [8] have

separate primitives for transmission and synchronization, for

instance remote procedure call and semaphores. However,

they also have a much larger set of constructs, usually in-

cluding imperative primitives, and this hinders their formal

investigation.

To bridge this gap, we introduce a new elementary model

of concurrency, the reflexive chemical abstract machine. We

both use this model as the basis for a practical program-

ming language design, and study this model formally using

a process calculus, the join-calculus.

The reflexive CHAM model 1s obtained from the generic

CHAM [6] by imposing locality and adding reflexion Local-

ity is achieved by barring non-linear reaction patterns; this

implies that each reaction rule or molecule can be associated

with a single reaction site. Reflexion is added by letting re-

actions extend a machine with new kinds of molecules along

with their reaction rules; this lets our model be computa-

tionally complete. Our model IS more effective than the

generic CHAM: molecules travel to their reaction site, in-

stead of having to mix and match. It also turns out that the
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sequential deterministic subset of our model is basically the

continuation-passing style J-calculus; hence we can embed

the A-calculus using any CPS transform.

Our language design extends a higher-order sequential

language with parallelism in expressions (with fork calls)

and m function patterns (with join patterns). Jointly de-

fined functions provide the same synchronization capabili-

ties as synchronous channels or concurrent objects. More-

over, jom patterns are more consistent with lexical scope:

they statically bind (joint) function calls to a body of code,

whereas the binding of messages to receptors is dynamic.

The join-calculus is simply the syntactic description of

the reflexive CHAM molecules. It is quite similar to the T-

calculus, except that it combines restriction, reception, and

replication in a single (joint) receptor defimtion. Our main

theorem states that the ~-calculus and the join-calculus have

the same expressive power, up to weak barbed congruence;

it is obtained by exhibiting fully abstract encodings in each

direction. As a result we can expect most of the T-calculus

metatheory to carry over directly to the join-calculus.

2 Overview

Most process calculi are based on synchronous channels. A

channel is an abstraction of the communication media on

which data is excharmed: send and receive operations on
u,

channels provide a concise denotation for the transmission,

routing, and synchronization that actually occur in a concur-

rent system. The ~-calculus [19, 17] has demonstrated that,

in combination with an elegant scope management tech-

nique, channel operations are computationally complete.

The PICT experiment [21, 24, 23] has further shown that

the m-calculus, more specifically its asynchronous fragment,

can be used as the basis of a useful higher-order concurrent

language, in a non-distributed setting.

In a distributed settinz. however, channels introduce
“4

atomic interaction between distant emitters and receivers

(communication m the ether [16]). This can be difficult to

implement, even more so if recovery from local fadures is

also supported: unless the channel implementation includes

a sophisticated fault-tolerant consensus protocol, some of

the implementation details wdl be revealed by failures. This

problem occurs even in the asynchronous setting, as there is

interaction between distant receivers, through contention.

On the other hand, channels are not absolutely required

for high-level distributed programmmg. For instance) they

are not primitive in object-based languages [1, 8]; unfortu-

nately, these languages lack an abstract foundation as sim-
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ple and precise as the n-calculus. It is such a model that

we purport to develop in this paper. Our starting point will

be the chemical abstract machine, which can be regarded as

the computational model of the n-calculus,

Litterally, CHAM interaction is local, since molecules

simply move around in a solution, until they meet in match-

ing pairs and react; but the random motion in this descrip-

tion is not very effective. Assuming that the chemical rules

have disjoint domains, the CEIAM also has a more opera-

tional interpretation: all molecules travel to a reaction site

associated to their rule, where they are sorted, matched, and

made to react (figuratively, reactions are ‘(catalyzed” at the

sites).

Under this interpretation, however, the CHAM is not

very concurrent: communication is centralized in a fixed set

of sites (catalyzers are bottlenecks), and the management

of each site is complex, as the number of different expected

molecule shapes can grow arbitraly (catalyzers clog up). It

would be much better to have a larger number of sites with

simpler matching instead, and this is exactly what the re-

flexive CHAM modifications bring in, by allowing dynamic

creation of sites and restricting reaction patterns.

We now sketch the basic mechanisms of the reflexive

CHAM; the formal definition is exposed in section 3. Our

model operates on higher-order solutions 7? E M compris-

ing two multisets. The molecules M represent the processes

running in parallel; the reactions 72 define the current re-

duction rules.

Names are the only values in our model, as in the ~-cal-

culus. They have a twofold usage: port names, and trans-

mitted values. We write z(y) to mean that the name y is

sent on the name z.

An atom is a pending message z(y). A compound

molecule consists of several sub-molecules, glued by the join

operator ‘([”. Molecules can be ,heated into smaller ones,

in a reversible way. As a first example, we consider a print

spooler with two ports: available printers like laser send their

name on the port named ready, while users send the file-

names 1, 2 to be printed on the port named job. There are

three atoms in solution on the first line, versus one atom

and one compound molecule on the second line, where the

molecule joins the laser-printer and the file 1. The structural

equivalence = relates these two solutions, wit bout reactions

yet.

O t- ready (laser), job(l), job(2)

* 0 k ready (laser) I job(l), job(2)

Denoted D or J D P, a reaction consumes compound

molecules that have a specific join pattern J, and produces

new molecules in the solution that are copies of P where

the formal parameters of J have been instantiated to the

transmitted values. This corresponds to reduction steps on

the whole solution (%? E M) -+ (%? } M’). Continuing our

example, we add a reaction that matches printers and jobs,

then sends the filename to the printer:

D = ready (printer) I job(flle) ~ printer(file)

We now add this chemical reaction in our solution, and we

use it to reduce our previous molecule and generate a new

atom, Notice that non-determinism comes from =, and is

just committed by the reaction.

D 1- ready (laser) I job(l), job(2)

---+ D } laser(l), job(2)

Our model is reflexive, meaning that reactions can be dy-

namically created. This is done by our last kind of molecule.

The defining molecule def D in P can be heated in two

parts, a new reaction D and a molecule P. In this case,

the newlv defined Dorts can be used in both L? and P. The. .
solution we just considered could have come from a single

molecule, with the structural rules:

0 E def D in ready (laser) / job(1) I job(2)

= D k ready (laser) I job(1) I job(2)

= D E ready (laser) I job(l), job(2)

A more realistic spooler would send the name job to its users,

and the name ready to its printer drivers. This corresponds

to the well-known scope-extrusion of the x-calculus. How-

ever, our definitions have a strict lexical discipline: the be-

haviour of ready and job may not be deterministic, but it is

statically defined. Other processes that receive these names

may send messages, but they cannot add new reactions for

them. This essential restriction to reflexion lets us extend

the language safely. For instance, special names used only in

&rules may be added to the machine without special care,

while in the ~-calculus any process may mistakenly alter

their behaviour.

In section 4, we expand the model into a simple pro-

gramming language with mobility, and we illustrate some of

its features. From the programmer’s point of view, it is a

high-level concurrent language with lexical scope and asyn-

chronous messages. We identify function calls as a special

case of message passing with CPS: we analyze two reduction

strategies for the A-calculus, then we define some convenient

syntactic sugar for sequential control.

The language also has object-oriented features. Ele-

mentary objects are defined by new names and new reac-

tion rules: methods are the names that are returned, be-

haviors are declared in the rules, states are held in messages

on internal names. Elaborate synchronization schemes can

be expressed among these concurrent objects by pattern-

matching on their rules. Our firm commitment to lexical

scoping makes our objects very static, meaning that more

imperative features such as cloning must be explicitly en-

coded

In sections 5 and 6 .we explore the properties of the join-

calculus and its relation to the ~-calculus. The join-cal-

culusis the process calculus induced by the reflexive CHAM.

We first define the observational equivalence, then we use it

as a basis to compare the relative expressive powers of dif-

ferent calculi. Our translations between calculus are proved

fully abstract with regards to weak barbed congruence; in

that sense, our technical results are precise up-to substitu-

tion of encodings in any context of the host calculus. In

section 5, we strip the join-calculus of convenient but un-

necessary features: recursion, join patterns including more

than two messages, polyadic messages, defimtions with sev-

eral clauses, and we obtain a core join-calculus that retain

the expressive power of our model. In section 6, we compare

this core join-calculus and the asynchronous n-calculus [11].

In spite of significant differences, both calculi provide ex-

actly the same expressive power. However, their scoping

conventions makes the accurate encodings surprisingly com-

plex. We present both simple and accurate encodings, and

we discuss their characteristics, which illuminate what sep-

arates the two calculi.
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We conclude the paper with a few words on future work.

An implementation is under way, to evaluate our language

in practice, and we mention the extensions to support types,

explicit distribution, failure-detection and migration.

In the annexes A and B, we sketch the proofs of

full abstraction for the two encodings between the fi-cal-

CUIUS and the join-calculus that are described in section 6.

These results are obtained using auxiliary encodings and

bisimulation-based techniques, in particular weak bisimula-

tion up-to expansion as proposed in [25].

2.1 Related work

To our knowledge, BanStre [5] was the first to suggest

‘<multi-functions” as primitives for synchronization. They

correspond to a first-order version of our jom definitions, in

a procedural and synchronous language. Our work is more

directly related to the recent “asynchronous” trend of the

T-calculus [11, 10, 7], and from its first applications [23, 21].

Our calculus focuses on mobility in a minimal setting.

This contrast with extensions for concurrency from an

object-oriented or a functional kernel [1, 9, 8]. Likewise,

distributed systems built on the actor paradigm [1, 2] pro-

posed a two-layered architecture with a functional kernel

wrapped in an imperative extension for communication.

Other calculi introduce concurrency and/or distribution

using different primitives. Instead of directed communica-

tion with a functional flavour, they rely for instance on uni-

fication and broadcast. This is the case for Oz [26], and for

linear objects [4].

3 The reflexive chemistry

We first give the syntax of processes, and the scope for their

names. Then we present the reflexive chemical machine, and

we illustrate it on a few simple examples.

3.1 Names, Processes, Definitions

Values in the reflexive CHAM are only names, as this is the

case in the m-calculus. Let N be an infinite set of names;

we use name variables in lowercase letters z G N to denote

its elements. In the following, ~ is a notation for a tuple of

name variables xl, x2, z~.

The following grammar defines processes, join-patterns

and definitions. A process P is an emission of an asyn-

chronous polyadic message z(O, a definition of new names,

or a parallel composition of processes. A definition D con-

sists of one or several elementary definitions .JbP that match

patterns J joining messages to guarded processes P, con-

nected by the A operator. It entirely describe the behaviour

of its defined names.

P ‘++f z (;) J ‘=’ z (q D =f J.P

def D in P JIJ DAD

PIP

Names that appear in a process P maybe captured by an

enclosing definition. The only binder is the join pattern J,

but the scope of its names depends of their position in mes-

sages. The formal parameters that are received are bound in

the corresponding guarded process. The defined port names

are bound in the whole defining process, that is, the main

process and recursively all the guarded processes. Received

variables mJ(J), defined variables dw(J) and dv(D), and free

variables fv(D) and fv(P) are specified by structural in-

duction. Notice the syntactic restriction for processes: No

received variable may appear twice in the same pattern J.

This rules out any comparison on names, and guarantees

that join patterns remain linear.

Lfcf
T-r)(Z(q) ——

dcf
rv(J]J’)

dv(z(i))
dcf——

dv(JIJ’)
d.f

def
dv(Jb P) =

dv(D A D’)
d.f

def
fv(JDP) =

Lfef
frJ(D A D’) =

fv(x(q)
def

~v( def D in P) ~’

fv(P[P’)
dcf

{u E ;}

TV(J) k. T-v(J’)

{z}

dv(J) U dv(J’)

dv(J)

dv(ll) U dw(D’)

A(J) U (fv(P) – T-w(J))

fv(D) U fv(D’)

{Z}u{ueq
(fv(P) U fv(D)) - dv(ll)

f7J(P) u fv(P’)

A name is fresh with regards to a process or a solution

when it is not free m them, In the following, we use substi-

tutions a and {“/V}, with possibly implicit a-renaming on

non-free variables to avoid name clashes.

While this is not needed in the join-calculus, we will as-

sume that for any given name variable the number of ar-

guments is the same in every message and in every join-

pattern. Formally, this amounts to use a recursive sort dis-

cipline and to consider only well-sorted processes, as for the

r-calculus[18, 22].

3.2 Operational semantics

We extend the chemical approach of Berry and Boudol

[6] with reflexion. We first give some heating/cooling re-

versible rules fi, This corresponds to the underlying struc-

tural equivalence on processes, and includes reflexion. Once

molecules have been suitably dissolved, the single reduction

rule + expresses the mechanism of communication in a

much simpler way than for the n-calculus.

Rules operate on higher-order solutions 7? E A-4, On

the right-hand-side, active processes are “molecules” in the

multiset M, on the left-hand-side, active definitions are ‘(re-

actions” in the multiset Ii?, For the sake of simplicity, we

only mention the elements of both multisets that participate

in the rule, separated by commas.

(str-jo,n) 1- PIQ = + P,Q

(str-and) D A E 1- + D,E t-

(str--def) k def D in P + Dud. k Pu~.

(red) JDP b J~,. --+ JDP t- Pu,.

Side-conditions for substitutions:

(str-def) aa. instantiates the port variables cZW(D) to distinct)

fresh names: Dom(adv) n (fv(%?t- M)) = 0
(red) a,” substitutes the transmitted names for the distinct

received variables T-w(J).
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The first two structural rules express that “1” and “A” are

commutative and associative. (str-def) describes the heat-

ing of a molecule that defines new names. The restriction

on ad, is reminiscent of the restriction prefix v in the n-cal-

culus, with regards to scope extrusion, and at the same time

enforces a strict static scope for the definitions. (red) is a

meta reduction rule that associates the actual reduction rule

to each reaction in %?. In one computation step, such reduc-

tions consume any molecule with a given port, pattern, make

a fresh copy of their guarded process, substitute its received

parameters for the sent names, and release the process as a

new floating molecule.

3.3 Some examples

We now give examples of processes and definitions, along

with an intuitive description of their meaning. The formal

treatment of observations is deferred until section 5.

def z(u) D y(u) in P (1)

clef y(u) D z(u) in def x(u) b y(u) in ~ (2)

def zl(u)lzz(v) D Z(U, V) in P (3)

def z(v) ly(sc) D K(V) in P (4)

def so DPA so DQ in so (5)

def onceoly(v) D z(rJ) in y(l) \y(2)\y(3)]onceo (6)

def loopo D PIZoopo in loopo[Q (7)

The simpler definitions perform some wiring between names:

in (1) messages on the local name z in P are forwarded to

the outside as messages on y; in (2) the leftmost z is a

free name, while the rightmost one is locally bound in P,

and will require renaming; however, messages on the local

z are still forwarded in two steps on the external one; (3)

performs multiplexing of messages on’ z whose parts are sup-

plied on ZI and zz; (4) was introduced as a print spooler in

the overview, but it more generally models n-calculus-like

channels, as values are sent on z and requests for values are

sent on y, to me matched in the definition; (5) and (6) both

express internal non-determinism P + Q using a compound

definition, and z(1) + z(2) + x(3) using the message on once

as a lock; (7) replicates the process P, starting a new copy

each time the definition is used.

We finish our series with a longer example that illustrates

both higher-order and the use of internal messages to store

some local state. A reference cell abstraction is defined as:

(
def get(~) is(v) D K,(v) Is(v)

def rnkce~l(vo, KCI) D A Set(u, s$)ls(v) D KOIS(’U)

in s(rJo) [ tco(get, set) )

Each mkcell message triggers the external definition, which

in turn defines three fresh names get, set, s. The first two are

sent back on KO for later access or update to the new cell,

Thanks to lexical scoping, the last name s remains local,

and the initial message S(VO) together with the two internal

rules guarantee the invariant of the cell: there is exactly one

message on s, which contains the current value,

4 Programming in the join-calculus

We now use the reflexive CHAM as the foundation of a con-

current programming language. While our model already

provides enough expressive power, its features are too low-

level for actual programming. For instance, there is no con-

venient way to express sequential control in a process, which

strongly suggest the use of some syntactic sugar. We first

study the embedding of higher-order functional program-

ming. using continuation-passing styles, we encode two re-

duction strategies for the ~-calculus in clear-cut subsets of

the join-calculus. Then we describe a toy concurrent lan-

guage based on these ideas, and we give some programming

examples. We finally discuss object-oriented features. pro-

gramming.

4.1 Two encodings of the A-calculus

Definitions of the form “ def ~(x) D P in Q“ seems to be

very similar to the “let ~(x) = E in E’” statement in

functional programming. In particular, they share the same

static scoping discipline, The major difference comes from

asynchrony in our model, meaning that we must explicitly

create and send continuations.

For a given CPS, we encode J-terms as processes that

can be triggered, and we compare their respective behaviour,

With minor adaptations, we obtain results of adequacy sim-

ilar to those for the n-calculus [17]: The terms and their

translations converge or diverge accordingly. Our purpose

here is to illuminate the tight connection between func-

tions and join-definitions, which makes our encodings sim-

pler than [17, 7]. Our syntax for the J-calculus is as usual:

Call-by-name: in this reduction strategy, A-terms are

reduced in leftmost-order and no reduction may occur under

a J. Our encoding is:

Intuitively, the process [Z’]V sends its value on v, a value

is a process that serves evaluation requests sent on K, and

requests supply two names: x to send requests for the value

of the argument, and w to eventually return a value when

evaluation converges.

The image of the translation is exactly the determin-

tstzc subset of the join-calculus, defined as the set of pro-

cesses that contain no parallel composition, and neither join-

pattern nor “A” in definitions. As expected, reductions for

processes in this subset are entirely sequential.

Parallel call-by-value: the A-term (TU) can be re-

duced as soon as both T and U have been reduced to values,

thus allowing the function and the argument to be evaluated

in parallel. Again, no reduction may occur under a J. Using

a larger subset of the join-calculus, we encode this confluent

but non-determmistic reduction strategy:

Again, the encoding [T]v sends its value on w and a value

is a process that serves evaluation requests sent on K, but
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evaluation requests now supply the value of the parameter

along with a name for the value of the term.

The image of the translation now uses parallel compo-

sition to capture the non-determinism of the strategy. The

symmetry between the evaluation of the function and of the

argument is apparent, backed by the two symmetries, on the

fork of evaluation requests and on the join of their results.

4.2 A language with sequencing

In our basic model, synchronization happens only as

molecules are consumed, and this suffices to express con-

trol flow. In practice however, the resulting programs would

contain many explicit continuations and would be difficult

to understand. Instead, we make the sequential control ap-

parent: we fix a CPS, and provide it as syntactic sugar in

the language. To this end, the new grammar extends the

syntax in two steps”

Names are split in two families: synchronous and asyn-

chronous

Processes can consist of series of instructions {1”} that

are executed sequentially

x(0
{I*}

PIP

def ~ = P [and J’ = P’]”

let. i7=V

run P

do ~(~)

If V th~n 1 [else 1]

return V to f

v

f(v)

x (a

f (q
JIJ

asynchronous message

sequence of instructions

parallel composition

recursive ciefinition

nameci values

asynchronous process

synchronous call

conditional

implicit continuation

value (name,. )

synchronous call

asynchronous message

synchronous message

join of several messages

As in the calculus, Awnchronous names x are defined

and used for asynchronous-messages; Synchronous names f

are names that implicitly transmit a continuation in every

message. We extend the sort discipline to distinguish names

consistently. Whenever a message is sent to a synchronous

name, a continuation channel is defined as the remaining

part of the current instruction sequence, and the continua-

tion is added to the message. Whenever such a message is

received as part of a join pattern, the continuation is bound

in the corresponding guarded process, and may be used to

send back results using the return instruction. Briefly, let

binds names from synchronous calls; do does the same when

the result is a synchronisation signal (); run asynchronously

forks a process; return (asynchronously) sends results back

on the continuation that was received on f Finally, any

value may contain nested synchronous calls. The formal

translation is omitted.

While the underlying model is the same, this smoothly

merges in a declarative style some non-deterministic pro-

gramming in a functional framework. For definitions with

only one message in their pattern, as is particular for contin-

uations, the substitution lemma holds, as the instantiated

body can be substituted for the calling message, as in any

functional language.

In our examples, synchronous names are capitalised; for

instance the mkcell example IS the compilation of the pro-

gram

def MKCELL (vO) =

{ def GET() I s(v) = s(v) I {return v to GET}

and SET(u) I s(v) = s (u) I {return to SET}

run s(vO)

return (GET, set ) to MKCELL }

The second example elaborates on the print spooler of the

overview, in an imperative style. Now, the user select a

printer and a format, and files are pre-processed accordingly

before printing. The channels PRINT and ENSCRIPT are

synchronous calls to the library. At run-time, the files letter

and note are transcripted and laser-printed, then the current

printer is changed, then the file drawing is printed in colour.

{ def NEWPRINTER(PRINT, f ormat ) I current (.,. ) =

{ run current (PRINT, f ormat )

return to NEWPRINTER }

and JOB(file) I current (PRINT, format)) =

{ run current (PRINT, format)

do PRINT (ENSCRIPT(flle, format))

return to JOB }

run current(LASER,ps)

do JOB(letter)

do JOB(note)

do NEWPRINTER(colour,pscolour)

do JOB(drawing) }

While this style mostly comes from the design of PICT

[24], the functional syntax for emissions and the static def-

inition of receptions make it more direct and allow a finer

control. The main drawback is that whenever a PICT chan-

nel is actually used with several emitters and several recep-

tors in parallel, it must be compiled mto a join-definition

(see example 4); fortunately, this E uncommon in program-

ming examples. Our approach also offers more declarative-

ness-than o-bject-based- languages, since there is no need to

mutate svstematicallv the receDtor.

Conc&ning the ~mplement~tion, the set of rules that

comes from adefinitionis independent from any other defini-

tion. Taking advantage of asynchrony, these rules are man-

aged locally by queues for messages, and by an automaton

that matches them with join patterns and forks accordingly

the guarded processes. To this end, well-known compila-

tion techniques are available [15]. Besides, the embedding

of large functional-style definitions can be made reasonably

efficient using tail-recursion-like optimizations. Finally, con-

crete values and built-m functions can easily be added. The

behaviour of their reserved names is given by specific 6-rules

that describe the consumption of their messages, and are

implemented as low-level function calls.

4.3 Concurrent objects and synchroniza-

tion patterns

Our model provides the essential features of objects, as IS

already the case for the n-calculus [28]. First, we consider

primitive objects that are already present in the language:

Using message-passing and pattern-matchingin our defini-

tions, we encode objects as servers that receive requests to

execute their methods.
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The design of a full-fledged object-oriented language

would require some more encoding: For instance, inheri-

tance (or cloning) is not primitive. Wesketch some features

to support more general objects with dynamic definitions

and inheritance.

4.3.1 Primitive objects

Objects are created in definitions, whose port names may

be either returned and made public, or kept private in the

body of their definition. In that sense, our cell example is

a simple primitive object. We identify names and methods,

definitions and active concurrent objects. The current state

of an object can be split into several components held on in-

ternal messages, according to the critical sections. Besides,

the interface may feature several states with different syn-

chronization capabilities. The declarative pattern-matching

on join messages is much more expressive than the serial-

ization of method calls: It contains the expressiveness of

coloured Petri nets, and can even be dynamically expanded.

We illustrate the combination of concurrency and syn-

chronization on the example of priority queues (figure 2):

def MK_PRIORITY_QUEUE() ‘

{ def

and

and

and

and

EMPTY() I noneo =

{ run noneo

return TRUE to EMPTY }

EMPTY() I some(x,E,A,R) =

{ run some(x,E,A,R)

return FALSE to EMPTY }

ADD(x) I noneo =

{ return to ADD

let E,A,R = MK.PRIORITY.QUEUE() }

run some(x,E,A,R) }

ADD(x) I some(y,E,A,R) =

{ return to ADD

do A(MAX (X,y))

run some(MIN(x,y),E,A,R) }

REMOVEOI some(x,E,A,R) =

{ return x to REMOVE

if 10 then run noneo

else run some(R(),E,A,R) }

none ( )

return EMPTY,ADD,REMOVE to NEW_PRIORITY.WEUE }

Our priority queue features three synchronous methods

EMPTY, ADD, REMOVE with the expected meaning; REMOVE re-

trieves the smallest value, or blocks until a value is avail-

able. There are two internal states, noneo when empty,

and some(x,E,A,R) when containing the smallest value x in

its head and another priority queue with methods E,A,R in

its tail. Statically, we can check that there is always exactly

one state message available for each definition. Values can

be concurrently tested, added, and removed; in particular,

a new some message is released after at most one compar-

ison when a new value is added, while the update propa-

gates toward thetail in parallel. When thetail is eventually

reached, a new, empty priority queue is created using the

recursive definition MKIRIORITY.QUEUE, which returns three

fresh methods on an empty priority queueto be stored in

the last-but-one some message.

4.3.2 Class-based objects and inheritance

Our primitive objects lack dynamicity, because the lexical

scope of their definitions forbids overloading or cloning. It

is well-known that inheritance and synchronization for con-

current objects do not merge gracefully; in our case, we can

recover ad-hoc dynamicity using indirections. In our spooler

example, a dynamic method to print files is implemented

by two static methods, job for invocation and newprinter

for overriding, while the current name associated with the

method is kept in the internal state currentprinter. Likewise,

one can substitute state overwriting for method overriding in

many cases, and mix freely static and dynamic components

within the same objects.

While our solution seems better than the traditional

object-as-server encoding, it requires more than some local

syntactic sugar. An alternative approach consists in com-

plementing the join-calculus with new features, e.g. with

more general records, to obtain richer primitive objects.

5 The join-calculus

The join-calculus is simply the set of molecules of the re-

flexive CHAM. In this section, we study in more details

its properties as a process calculus: we first give another,

equivalent definition of a variant of the join-calculus. then

we briefly discuss observation, and we identify observational

equivalence as a barbed bisimulation congruence; finally, we

use this tool to precisely reduce the join-calculus to its es-

sential features.

Our reflexive chemical machine entirely defines the syn-

tax (molecules as processes), the structural congruence (%),

and the reduction relation (e”---+=”). Any chemical SO-

lution can be cooled down into a single process, wrapping

all the reactions in a big definition header. Thus, join-cal-

culus processes provide another presentation of our model

as a first-order rewriting system modulo structural equiva-

lence. This more syntactic approach is especially useful to

compare our model to other calculi (several subsets of the

join-calculus in this section, and the n-calculus in the next

one).

5.1 Thejoin-calculuses a process calculus

The core (recursive) join-calculuses arestriction of the full

calculus with simpler definitions, join patterns and mes-

sages, Its syntax is given by the grammar:

P ~f z(u) \ P,[P, I def z(u)ly(v)DPI in PZ

As before, the scope of u,v is PI) whereas the scope of

z,y extends to the whole definition. The structural congru-

ence = is the smallest relation such that for all processes

p,Q,ll,,S, for all definitions D, D’suchthatdv(D), dv(D’)

contain only fresh names,

PIQ s QIP

(PIQ)IR - P[(Q]R)

Pldef DinQ = defDin PIQ

defD in defD’ in P = defD’ in defD in P

PEmQ =+ p~Q

PEQ ==+ PIRGQIR

R?S,PFQ ~ defJPRinP? defJDsinQ

We now define the reduction relation as the r-transitions

of a labelled transition system ~, where 6 ranges over
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{D)u {-r). Ourtransition relation is the smallest relation

such that for every definition D=z(’u)ly(v)D~,

z(s)ly(t) ~R{s/u,t/v}

and for every transition P ~ P’,

PIQ ~ P’IQ

de fDin P~def Din P’ if fw(D) n drJ(6)= 0

de f6in P~def6in P’ ifrS#T

Q ~ Q’ if P= P’and Q=Q’

Lemma 1 The structural congruence z is the smallest con-

gruence that contains all pazr of processes P, Q such that

t-Pe* t- Q. The reduction relation L contazns exactly

the pairs of processes P, Q up to E such that t- P +1- Q

5.2 Observation

While the observation of concurrent processes is difficult

in general, the join-calculus benefits from the experience

gained from CCS and from the m-calculus. After an informal

discussion of observation criteria, we introduce the equiva-

lence among processes as the largest congruence with a few

suitable properties, thus following the approach proposed in

[12, 13] for the w-calculus. This provides an accurate basis

for comparisons with other calculi.

5.2.1 What is observable?

The only way for a process to communicate with the out-

side is to export some names in messages on its free names,

and to wait for an answer from an enclosing definition. We

distinguish processes accordingly: To each free name z, we

associate an asynchronous, output-only barb & , which tests

the ability of processes to emit anything on z. In the fol-

lowing, ---+* stands for any sequence of ~ and &,

P&~’ zGfv(F’) A 3ti,7?/, M, OEP+*’Rk M,z(@

5.2.2 Observational congruence

The congruence between processes is the largest equivalence

relation % that is a refinement of the output barbs $Z, that

is weak-reduction-closed, and that is a congruence for defi-

nitions and parallel compositions: VP, Q, if P = Q, then

1. Vx c N, P JJC implies Q &

2. P —-+” P’ implies 3Q’, Q ---i” Q’ and P’ z Q’

3.VD, de fDln P = de fDin Q

4. VR, RIP z R\Q

In most proofs, we also need a finer, auxdiary ezpun-

sion relation, and we apply the bwimulation up to exPan-

sion technique [25]: the expansion between processes is the

largest relation < that verifies properties hke 1-4, and such

that VP, Q, if P ~ Q, then

Q ---+ Q’ implies P’ ~ Q’ or 3P’, P ---i P’ ~ Q’

For example we have:

fv(P) = 0 * P

PEQ~P

x (u)

def z(t) D t(u) in ;(z)

z(x)

def u(z) b w(z) in z(u)

Fz o (1)

7s Q (2)

# Y(u) (3)

~ def z(t) D t(u) in z(y) (4)

# z(y) (5)

= z(w) (6)

In (1) no process has any barb, and reductions are simulated

by no reduction on the other side; in (3) and (4), the two

processes don’t have the same barbs; in (5) the two names z

and y can be distinguished in contexts as in (4); in (6), two

distinct names are sent on x, but their behaviour is the same

in every context (although an internal reduction is needed

to relay values from u to v),

Despite technical differences in their definitions, H is also

the congruence over all contexts that is obtained from the

weak, barbed bisimulation whose barbs are &, as defined

for the n-calculus in [20]. Such barbed congruences can be

defined for many process calculi, independently of their syn-

taxes, and we take advantage of this common framework to

obtain precise results.

5.2.3 Full abstraction

In all the following, we assess the relative expressive powers

of miscellaneous calculi from the existence of fully-abstract

encodings between them,

Definition 1 Let F’l, Pz be two process calcula, wzth respec-

twe equivalences WI C PI X PI, %Z C P2 X Pz.

Tz is more expressive than ‘PI when there ZS a fully ab-

stract encochng [ ]I+z from PI to P,: for all P, Q in P,, we

have

P =, Q ~ [P]l_, =, ~Q]l+,

PI and PZ have the same expressive power when each

one as more ezpressave than the other.

We use observational congruence as the reference equiv-

alence for each process calculus, meaning that our full ab-

straction results are up to observation in any context, This

seems to be the finest results one could expect between dif-

ferent, process calculi.

5.3 Internal encodings

The reflexive CHAM model corresponds to a join-calculus

that IS convergent as the kernel of a programming language.

However, it is possible to reduce it further to simpler prim-

itives. To this end, we successively remove recursive scope,

definitions with several clauses D A D, Join-patterns with

more than two messages, and messages with several trans-

mitted values. We replace them by internal encodings,

which we prove to be fully abstract, Our purpose here is to

isolate the essential features of the join-calculus, and to give

some useful examples. Of course, all the derived features

would be taken as primitives in a realistic implementation.

Theorem 1 The core join-calculus has the same ezpresstve

power than the full jozn-calculus up to congruence; ~n par-

ticular, there r.s a fully-abstract encodzng [ ]0 from the full
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calculus to the core calculus: for all processes Q, R of the

full join-calculus,

Q=12 = [Q],%[R]o

‘l% actual proof consists of successive internal encod-

ings of redundant features; in each part of this section, we

explain a stage of the encoding. We omit the proofs. Please

note that the following encodings have been chosen for their

accuracy with regards to observation, and for their simplic-

ity of exposition; as a result, they may use busy-waiting,

andintroduce in finite sequences ofinternal reductions; they

are not meant to be used in practice to implement the fea-

tures that we remove from the join-calculus. Indeed, we

plan to implement efficiently the full calculus directly from

its reflexive machine specification.

5.3.1 Recursive binding

The non-recursive variant of the join-calculus is defined by

restricting the scope of defined variables in def D in P to

P only, so that guarded processes inside of D cannot re-

fer to them. To get rid of the recursive usage of names in

definitions, ourencoding simply shift the binding variables

from definition to reception, Another name p is defined to

hold formerly recursive names, and a message containing

the recursive names is always available on it. In particular

the received variable PI is always bound to p each time a

molecule is received.

Lemma 2 Let ; be the vector of variables frJ(Q) n dv(J),
and p, pl be fresh vartables. We have:

def JDQ in P

< def Jlp(z, PI) > QIPl(~, Pl) in PIP(2, P)

5.3.2 Complex definitions

We compile every complex definition with n-way join pat-

terns and/or multiple clauses connected by A into several

simpler definitions with only one pattern that joins at most

two atoms. For that purpose, we implement an invisible

layer between the emitters and the guarded processes of the

definition, that makes explicit the automaton that matches

messages and patterns.

For clarity, we use the syntactic sugar developed for

our language to present our encoding, except use the z(v)

not ation to indicate as yncronous names, rather than capi-

talization as in Section 4. We encode the definition D =

JID PIA. . . J. D P.. Up to a-conversion, we may assume

that patterns Jk joins messages of the form z, (~). Then,

the translation of def D in Q is:

def getolset(;, Z) =return 3, fi to get

{

let S, t = geto

def x,(Z) = run set(ii U {i}, ti{ti/~~ })

if z G 3 then run z,(v, ) 1...

[
let 3, Z = geto

if s-k C Z

def pk () = then run ~klset(F – S-k, Z)

else run set(~, U)

run ph () }
run ph ()

run set(O, 6)

run Q

The translation consists of a simple two-way-join defini-

tion that matches internal actions to an internal state (~, ~

that “caches” the current pending messages on each of the

defined names ~~ of D: ~ represents the set of names of avail-

able messages, and ; cent ains one of the pending values for

these names, if any.

For each Jk, the auxiliary process definition pk repeat-

edly checks whether the current state s contains all the de-

fined variables sk of Jk, and triggers the guarded process l’k

when successful.

For each xi, the new definition inserts values of messages

in the current state. Notice that if another message is al-

ready present, it is removed and re-sent on z,; this makes

sure that the choice of messages that are present in the cache

~ can freely be reconsidered until they are actually sent to

apk.

Lemma 3 If DQ as the translation dejined above, then

de fDin Q<DQ

Hence, if [P] is defined as the join-term obtained from P by

applying the above translation to all compound definitions

m P, then [ ] M fully abstract.

5.3.3 Polyadic messages

As in the -r-calculus, we communicate tuples of names on

auxiliary private names; we first describe the protocol for

pairs: the process OZ(U,ti) sends the pair u, v on z; the con-

text I~U,ti)[P] extracts a pair u, v from a “pair” name p, then

executes P. On the sender’s side, an internal state w holds

the next value

syntactic sugar

d.f
Oz(u,.) =

def

qu,.)[p] =

to be returned to rw. Again, we use the

of the language to hide continuations:

I

def rolw(z) =return z to r

run w(u)

{

let z = ro

def rwo = run w(v)

return z to r-w

run x(rw)
}}

[

let u = to
let v = to \

(run P )

The translation of well-sorted polyadic processes is de-

fined inductively on processes; after a first encoding of tuples

as nested pairs, we only have to describe the translations for

dyadic messages and definitions:

[Z(U, v)] %f o Z(ti, u)

[ def r(u, v)ly(w, z) D P in Q]

{

def z’(r) ly’(t) = J{v,v, [If~,.)[[F’lll

def def z(r) = I~U,V)[O=I(ti,ti)l—.
def y(t) = Ifw,z)[OvJ(w,:)]

run IQ]

This encoding may appear redundant, as pairs are en-

coded and decoded twice! However, this ensures that only

valid pairs are involved in the actual join-definition. With
only one level of encodings, some contexts that do not com-

ply with our protocol may interfere, as is the case in the
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following example, where P H Q but C[P]’ # C[Q]’.

P %’ def z(u)v)ly(w, z) Db(b) in z(z)lz(a, a)ly(a, a)

Q %’ def z(u, v) IY(w, z) D b(b) in x(z) lb(b)

C[ ] ~’ def z(a) D(def t(~)bo in z(t))in []

Lemma 4 The encodtng [ ] 2s ~uily abstract. The core

monadic and the core polyadzc varzants of the ~om-calculus

have the same expressive power.

6 A comparison with the n-calculus

Despite their syntactic differences, the join-calculus can be

considered as an offspring of the ~-calculus, in the asyn-

chronous branch of the family. The latter was introduced

independently in [7] as the (mini) asynchronous ~-calculus,

and in [10] as the v-calculus. Both authors suppress the

guards on emission, and compare the result to the original

x-calculus. Going further in that direction, the join-calculus

is an asynchronous ~-calculus with the strong restrictions:

e the three binders (scope restriction, reception, repli-

cated reception) are syntactically merged in a single

construct: the definition;

e communication occurs only on defined names;

a for every defined name, there is exactly one, replicated

reception.

There are several reasons to be interested in a formal

comparison between the two calculi the ~-calculus has

been thoroughly studied; it is a reference calculus, and

many results relate other formalisms or implementations to

it [3, 17, 26, 28] Therefore, it is appealing to “translate”

such results automatically to the join-calculus. On the other

hand, some issues are best addressed in the join-calculus, as

for instance locality, implementation purposes, and explicit

distribution. Besides. this also movides a deeD insuzht into. .“

what is common and what is different in the join-calculus

and in the n-calculus.

Both encodings that are used to get our most precise

results are complex, but their underlying Ideas are simple.

In particular, much simpler encodings can be obtained in

less general settings; for instance, programs written in PICT

and programs in the language presented in section 4 would

use very similar implementation techniques,

Using the results of the previous section, we consider the

recursive, polyadic join-calculus with at most two-way-join

definitions as the target calculus to encode the m-calculus,

and its monadic variant for the reverse encoding,

We first recall the definition of the asynchronous n-cal-

culus; then we encode the n-calculus in the join-calculus,

The first, naive encoding replaces each channel of the mcal-

CUIUS by a two-way definition; however, some more work is

needed to achieve full abstraction. We present our approach

based on ‘[fireballs” in detail, but we defer the presentation

of the proof to annex A. In the same manner, we then en-

code the join-calculus in the ~-calculus using the straight-

forward translation of definitions into sco~e-restriction and.
replicated reception. Using the same approach, we also need

to refine the encoding. The sketch of the proof can be found

in annex B.

In all our encodings, we will assume that every name that

is introduced in the translation rules is a fresh name that

does not appear elsewhere in the terms. This may involve

some a-conversion.

6.1 The asynchronous n-calculus

To study this relationship, we precisely compare the jom-

calculus to the asynchronous ~-calculus. We use the syntax

of MiIner in [18]. Without loss of generahty, we allow only

monadic messages, and replicated input instead of more gen-

eral recursion.

P ~f P\Q I VU.P I EU I z(u).P I !z(u).P

Following the observational approach of [10, 11, 13], the

congruence %. is defined for the w-calculus as the asyn-

chronous barbed congruence whose barbs are the emissions

on free channels.

Theorem 2 The join-calculus and the summatton-free

asynchronous ~-calculus have the same expressive power, up

to their weak output-only barbed congruences.

6.2 Asynchrony, Relays and Equators

Our encodings essentially rely on the properties of the asyn-

chronous reduction-based n-calculus as discussed in [11, 12],

and on similar properties of the join-calculus.

In both calculi, it is not possible to observe the reception

of a message; for instance we have Z(U) .ZU X7 O, and it

is not possible either to distinguish between two different

names that have the same external behaviour. We Illustrate

the latter with a defimtion of equators between names:

M“ ‘:f !Z(u),ljul!y( v).?ik
Z>v

This process repeatedly receives values from z and forwards

them to y and vice-versa, so that no matter which name z

or y is used to send a value, it can always be made avadable

for reception on the other name in one internal reduction:

Lemma 5 FOT all 7r-processes P, Q

6.3 Encoding the r-calculus

6.3.1 Naive structural definition

To each channel z of the n-calculus, we associate two names

XO for output, x, for input, and an enclosing definition that

matches output and input The emitter simply sends values

on zo; the receiver defines a name for its continuation, and

sends it as a reception offer on z,:

For example, we translate the following ~-process and its

reduction

vz. (?talillz(u) @L) -+ v.z.(~al~b)
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to the join-process and the series of reductions

def zO(VO, v,) Iw(K) D K(vO, w,)

in ~o(%,~i)l~o(%?~l)
I def K(UO,U;) Dyo(uo,u,) in z,(m)

def K(uo, w) ~ yo(%, ut)
++ in def z~(v~,v~)lz,(~) D K(vO, W)

in zO(aO, a,)lyO(bO, b,)

In the same manner, any reduction on a bound name in the

~-calculus can be simulated by a join-reduction followed by

a deterministic reduction in the join-calculus, and conversely

any reduction in a join-calculus translation belongs to one

of these two cases, and can be simulated in at most one

reduction in the m-calculus.

6.3.2 Full abstraction of the encoding

Unfortunately, the previous encoding does not reflect the

behaviour of processes of the ~-calculus when placed in an

arbitrary join-calculus context: the protocol relies on the

presence of specific definitions for every free name, while

the context may define them in some other way.

For example, the translation [?ial~b[z(ti) .VU] = cannot re-

duce anymore, because there is no englobing Pm, Worse,

[Z(U) .ZU]= exhibits a barb on z, that reveals the presence of

an input for x, and allows a context to distinguish this pro-

cess from O. And because of mobility, it would not be enough

to supply a correct definition of go, z, for every translated

free name, since a context would still be able to “forge” a

message XO (z, t)from some of its own names .z, t with arbi-

trary definitions.

To protect the translation from hostile contexts, the

names resulting from the free channels of the ~-term must

set -up a %rewall” that enforces the protocol. We refine our

first idea: each channel z is now represented as several pairs

z., Z. from the naive encoding that cannot be distinguished

from the outside. Two pairs are merged by repeatedly com-

municating their pending messages to one another. New

pairs are defined at run-time according to the following se-

cure protocol:

e Whenever a pair of names is received from the outside,

the firewall defines a new, correct pmmy pair, merges

it to the external pair, and transmits the new pair

instead.

● Whenever a pair of names is sent to the outside, a new

firewall is inserted to setup proxies for future messages

on this pair.

As a result, the translation and the context never exchange

names from a syntactic point of view. We use the following

contexts to build the firewall on top of the naive translation:

For every free name z, P. encodes the creation of a new

proxy for its output. E. does the same, and also exports the

proxy on a conventional free name z.. Finally, M recur-

sively defines the proxy creator p for the whole translation.

Notation: Whenever a context defined with a name

index appears without this index, it stands for the ap-

plication of the context for at least all the free variables

in the ~-term, and for a definition for p. For instance,

&[[zy]*] =f A4[tz[t,[[zy]=]].

Theorem 3 For all processes Q, R m the n-calculus,

Q X. R ~ &[[Q]~] w S[[R]X]

Note that E catches all the free variables of PIQ. In

the proof, we also give an auxiliary encoding that is strictly

compositional.

6.4 Encoding the join-calculus

The reverse translation is simpler, because the join-calculus

is somehow the T-calculus with restrictions on communica-

tion patterns. However, a careful encoding is needed to pre-

vent contexts of the ~-calculus from read~ng

the names they receive from the translation.

6.4.1 Structural definition

[Ql~lj =’ [Qlj IIRI1

[z(v)], =’ -’o

messages from

[clef z(u)ly(v) D Q in R]j A’ vzy.(!x(u).y(v), [Q]j\[R]j)

Reductions in n-calculus translations correspond exactly

to the reception of messages in join-patterns. In the trans-

lation, we loose the symmetry between z and y and the

atomicity of their join-reduction, but it does not matter as

scope restriction and [ ]J guarantee that these details cannot

be observed.

Again, the translation reveals too much about the source

process, as a context of the n-calculus could start reading

values on names bound in the translation of definitions, In-

deed, if we were translating the join-calculus into an asyn-

chronous ~-calculus extended with a type system with polar-

ities [22], we could specify write-only types for every chan-

nel that is communicated inside of the translation, and the

(typed) previous encoding would already be fully-abstract.

6.4.2 Full abstraction

To obtain our second full abstraction result, we also need

to build a firewall. The interface recursively sets up one-

way relays for every name that crosses the boundary. It is

built from the following terms, with the same convention on

!z(7J).7we .(Fw=vpjwe)

m-.!r(~,ze).RZZCl[ ])

VZ(RZ=.111)

‘R is a global definition for the translation, which sets

up one-way relays Rzze or Rzz, from the first to the second

of its argument. When a relay forwards a message, it also
sets up a relay going in the reverse direction for the trans-

mitted value. There is no syntactic scope extrusion of the

translations of definitions, and their synonym can always
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receive messages. We use the same notation convention as

before: S“ [P]J stands for the application of 7? followed by

applications of &l for at least all free variables of ~ of P.

Theorem 4 For all processes Q, R in the join-calculus,

Q s R - &“[[Q],] X= &*[[R],]

7 Future work

Many interesting issues on the join-calculus are outside the

scope of this paper. They include actual implementation

techniques, type systems and in particular linear types for

the names that represent continuations, as in [22, 14, 27],

extensions of the calculus with records for a better support

of object-oriented programming. Observation and equiva-

lences also deserve a more detailed treatment, as well as

a comparison with their counterparts in the asynchronous

7r-calculus.

To conclude, we briefly mention our current usage of the

reflexive CHAM and of the join-calculus in a programming

language design where resources and environments are ex-

plicitly distributed, while the details of the network and its

connectivity remain hidden. In a practical distributed set-

ting where some sites may fail, the atomicity of each inter-

action must be specified accurately [3], in a way that can be

implemented locally. The join-calculus relieves us of many

difficult issues: As synchronization can only happen on def-

initions, it is sufficient to require each definition to be an-

notated with some location, that is shared by all its names

and guarded processes. Likewise, the actual allocation of re-

sources for a definition such as waiting queues, automaton,

and closures, happens locally as the definition is activated

using the chemical rule (str-def). In that setting, messages

are forwarded to their definition asynchronously, then han-

dled locally. We currently study extensions of the reflexive

CHAM and of the language that provide explicit control of

the localization of definitions on several sites, and possibly

their imperative migration from one site to another. This

would make intensive interaction more local, and would pro-

tect it from local failure. A distributed prototype is under

way, to assess the feasibility and the interest of a distributed

implementation of process calculi.
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Sketch of the proofs of section 6

Notation: In all the diagrams that follow, we use the usual

conventions : for all relations on plain lines, there exists

relations on dotted lines, and stars denotes the reflexive-

transitive closure of a relation.

A.1 Su jm is fully-abstract

A.1.l Combining translations and con-

texts

We first prove the direct implication by studying how a

translation can interact with an arbitrary join-calculus con-

text. This is performed on an auxiliary translation that is

very similar to [ ]T:

Definition 2 The translation [ ] maps x-processes to Join-

processes using the same structural definition that for [ jr,

except for scope restriction (so that output always leads to

the creatzon of a new proxy pair), and for unguarded outputs

(where the definition of XO is unfolded):

[VZ.P] 2’ P.[[P]]

[EU] %’ P. [zt(z~, Z,)[[M~,ti]=] (when unguarded)

Definition 3 Hybr~d terms are terms of the Join-calculus

that are structurally equivalent to some 7 [El [Q]], where E

is a ~oin-calculus process, Q is a ~-calculus process, and P

is an header of definitions such that for all free names x

in Q, Pz appear-s in P, and such that every message on xl

channels matches some xl (vO, v, ) where P. appear-s m P.

In particular, the processes & [[Q]] that appear in the

theorem are hybrid terms. We now study reductions inside

of hybrid terms. These reductions can be:

1.

2.

3.

reductions that use the join-definition of some Z1, Z;,

which correspond to reductions in the ~-calculus;

reductions that manipulate pairs of synonyms, or trig-

ger continuations K, which are induced by the encod-

ing;

reductions inside of E, which are independent of the

translation.

We are mostly interested in the first family of reductions.

To get rid of the details of the encoding, we first define two

auxiliary expansions to relate hybrid terms that differ only

because some deterministic reduction hasn’t been performed

yet, or because some extra synonyms have been introduced

for pairs zO, z,. Then we use the weak bisimulation up-to

expansion technique [25].

Lemma 6 Let +de~ be the relation on ~otn-processes that

contains all pairs of determanzstic reductions; ~~c, ~~f (_+&~

)*; <~., ~sf~~,~,. Then ~~.,, is a barbed expansion.

Lemma 7 Let +,.,,~. relates hybr%d terms with one addz-
taonal pair of synonyms on the left-hand-sxde:

PP.,V [E[~Q]l[M;,Y]T] +,,,.,., PP. [E[[Q]] {“/,}

<
d,’

_r,lcrge = (-k)-’.

Then <,..,.. is a barbed expansion.

Lemma 8 E [[Q].] = 2 [IQ]]

Lemma 9 The reductions m the ~-calculus can be mim-

icked on thew translat~ons:

if Q --+* Q’, then P [[Q]] +* (~~,,~,,,.,.,. )*P [[Q’]]

Lemma 10 For all pair of hybrid terms P [El [Q]],

P [EIIR]] ,

if Q % R, then P [EIIQ]] x P [EIIR]]
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Proofi Let the relation B contains all the pairs of hybrid

terms that are obtained from congruent m-processes:

VQ =m R. PIEIIQ]] B P [EIIR]]

We establish that B C =. To this end, we distingmsh

among the reactions that may happen on the left-hand-side

hybrid term, and in each case simulate it on the right-hand-

side. We consider four cases:

Reduction outside of the translation: they are the

same on both sides.

Reduction inside of the translation: a communication

occurs bet ween a reception offer and an output; it corre-

sponds to a communication in the original ~-term, except

that as the value is received, a new proxy is created, and

that several deterministic reductions may be necessary to

reach an hybrid term. On the right side, we use Q == R

to obtain a sequence of reductions 1? ~“ R’, and we mimic

them in the translation.

i
‘*

I I

Intrusion of a pair of channels from the environment

into the translation: The receiving m-term Q is of the form

vti. (Q’\x(z). Q”), whale there is a correct pending value

ZI (z., z,) in the join-calculus and a definition to match them.

We first use an auxiliarv commutative dia~ram to msh the. .
emission under the translation. Using our lemma, we can

then build reductions for the right term, and with a few de-

terministic reductions on the bottom left, we get a new pair

in B. On both sides, we use our expansions on hybrid terms

to switch Z1 (zO, z,) and ~Zz].

zz@.(Q’\z(z).Q”) =-- ?iz\R

i t
v;.(Q’]Q”) -- .::.. R’

I

I_ *’

>
---- P [El[vz.(Q’lQ’’)jl - ~------ +

—-—.

Extrusion of a pair of channels from the translation to

the environment: the emitting n-term is of the form Q =

vu (Q’ I?iy), where possibly u = y. If 1, u are fresh names,

we get a similar emission for R by applying the congruence

Q == R to the context O [ ] %’ ~ulz(y).l(u),Lf~Zl [ ] :

CJ [rm.(Q’lzy)] = O [R]

In the diagram, the reductions on the right can be reordered

as internal reductions in R, followed by the two reductions

on z, 1 with O From the first ones, we build the correspond-

ing reductions from the translation on the right to a term

that is an expansion of vu’. (R’ lM~,, ).

P [E [x, (~)] IIvu.(Q’IZY)]] ~ ‘P [E [z,(.)] IIR]]

I *’

P [E [/c(z., z,)] IIvu.(Q’IM;,Z)]] ~- ~- ----- +

From the previous diagrams, and as ~ 1? z IS a congru-

ence and respects the barbs, we obtain by defimtion of x

that (~ B X) c s, and in particular B c x ❑

A.1.2 Correctness

We need yet another translation that is fully compositional:

each term is wrapped in a protective context, at each step

of the structural definition; conversely, the names of each

subterm must be made synonym for the names in the current

term:

Definition 4 The translation [ ] maps ~-processes to jotn-

calculus processes:

with the followzng defintt~ons (and wath the convention on

tndtces)

Z catches exported synonyms for channels in the scope of

the context. ~ prevents extension, thus providing locality,

Lemma 11 VQ, [Q] % S[Q]

Proof: In each case of the structural induction, we use

variants of the relatlon &ml~&* [P] ~~,.+, ~,,,., g, E. [P]. We

present two significant cases

I ,

E



Proof: {( Q,~), &[Ql x S[R]} is a barbed congruence in

the r-calculus: The congruence follows from the previous

result and the congruence property of %.

&[C [Q]] = [C [Q]] = ([C]) [[Q]] R ([C]) [8[Q]]

The asynchronous barbs are the same: They can be in-

dividually tested in simple contexts. The bisimulatlon is

obtained from previous lemmas. ❑

A.2 &n u 13 is fully-abstract

In this part, we use conventions for names: In the ~-calculus,

Z~ is a free variable of the translation, that corresponds to
the external name z. In the join-calculus, we introduce for

each name z another name, ~, that may appear at most once

in a process, and only as the port name of an unguarded

message ~(y); we note P a process that may contain these

messages. Such messages will keep track of internal names

y that have been exported to the context; to this end, we

adapt [ ]J to translate them into incoming relays.

Definition 5 A hybrid term is a term of the x-calculus that

ts structurally equivalent to

wheTe ~ M any context oj the fi-caicuhso~ the form ufi(l?~[ ]),

and where ~ is a jom-pr-ocess with possibly some unguarded
—

messages Z(Z), such that its fr-ee variables ar-e m {~, ~}.

Lemma 13

Lemma 14 Let ~J_r be the largest expanston between the

~-calculus and the ~om-calculus that respects barbs. Then

for all ~om-process P we have P ~J_~ [P],.

Lemma 15 The relation that contains all pairs of hybrid

terms whose extended ~oin-pr-ocesses are congruent is a

barbed congruence m the r-r-calculus.

Proofi The congruence property is obvious; the bisimula-

tion requires a case analysis, which will also establishes that

barbs are preserved. We study in more details the inter-

actions between the translation and its ~-context, and the

set-up of new relays. Four kinds of reductions may occur:

External communication: apply the same one on the

other side.

Intrusion of an external message is received on an incom-

mg relay: the messages is withdrawn from the m-calculus

context, and committed to an internal usage; except from

the first step which prevents the input of the message in the

context, the following steps are deterministic, and lead to a

new hybrid term.

To obtain a bisimilar hybrid term on the other side, we

use the join-calculus context:

0,[ ] ~f def ~(z) D ~(z) in def ~(z) P z(u) l~(z) in [ ]

Both join-processes have a barb on ~ that is necessarily a

single, unguarded message Consuming ~ on both sides leads

to a pair of congruent processes. We then discard the useless

definition of ~(z), and wrap both processes as a new pair of

related hybrid terms.

Internal reduction on the translation of a definition: us-

ing x in the join-calculus, we obtain a sequence of reductions

on the left side, and mimic it in the translation. Some de-

terministic reductions ma be needed on both sides to reach

a hybrid term.

Extrusion by internal reduction on an export relay: in

a few deterministic reductions, messages on translations of

free variables are exported to their public n-calculus name:

c p;p[z(x)]],] +;et c [Vz(z+;[q;(z)]],]

We use the following context CIe to obtain an adequate

sequence of reductions on the right side: the first emission

on .zJ is handled in a special way, while the next ones are

silently transmitted.

def eo D O in def a(u)l10 D u()

in def z’(z) D z(z)

0. [ ] ‘:’ in def z(x)[c(R) D K(z) Ic(z’)

in def Kl(x) D ~(z)la(e)

in c(~l)la(d)[lo [ ]

(9. [F[z(z)]]--=-0. [q

3] *’

+ ~ +
P[2U] % .-. . ---- --. L Q’

@ has no barb on c; we can reorder the reductions on
the right to defer interaction with the context O=, to obtain

a sequence of reductions to mimic in the translation. ❑

Lemma 16 for all P, Q m the ~otn-calculus,

PxQ a S“[P] , XT &“[Ql,

Definition 6 We use the compositional encodtng [ ]3 where

D = z(u) ly(v) D Q to obtain the second half of the theorem:

[QIRI, 2’ [Q], l[Rlj
[X(v)]j ~f I&[qv, )]

[ def D in R]j ‘:f vzy.((!z(u).y(v) .[Q]J)l[R]3)

Lemma 1’7 For every join-process Q with free varzables ~,

[Q], x (5;[Q]j

We conclude using the same argument that for the re-

verse translation.
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