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The sufixes used in logi¢ to indicate differences of type may be regarded either as
belonging to the formalism itself, or as being part ol the machinery for decnchng which
1ows of symbols (without suffizes) are to be admitted 25 significant, The two different
attitudes do not necessarily lead to different formalisms, but when types are regarded
as only one way of Iegulatmg the calculus it is natural to consider other posslble ways,
in particular the direct oha,racterlzatlon of the’ mgmﬁca.nt formulae Direct eriteria
for stratification were given by Qume in his ‘New Foundations for Mathematical
Logic'{7). Inthe correspondmo typed form of this theory ordinary integers are adequate
as type-suffixes, and the direoct description is corxespomhncly simple, but in other’
theories, including that recently proposed by Church(s), & partially ordered set of
types must be used. In the present paper, criteria, equwalent to the existence of a
oorrect typing, are given for a general class of fo:rm&hsms, which includes Church’s
gystem, several systems proposed by Quine, and (with some slight modifications, given
in the last paragraph) Principia Mathematica (The discussion has been given *f.}:us
general form rather with a view to clar 1ty than to comprehenswaness )

The effect of stratification on the Tules of procedure is not discussed in this paper,
except in so far as all formulae occuiring are requized to be stratified; T and the question
of possible relaxations of the stratification conditions is therefore also not considered.
The obiect is 1ather, by showing how existing type-systems could be axiomatically
treated, to provide a convenient machinery for such genera.].\zatlons

1. Stratification can be defined for any kind of ‘scheme’ in which a finite number of
idensifiable places ate filled by letters (e g formulae, matrices, sets of squations),
provided that for every gcheme, &, of the system the incidence of two relations betweer]
lepters, ‘X7 Y in &’ and ‘XyY in ¥, is determined in such a way that

{A 1) 1 is symmetrical,
(A2) 7 and y are preserved under any homomorphic change of letters I

\ (The conditions are satisfied, e g., if the schemes are rows of letters, and ‘X 7Yin &
means ‘an X ocours next to a Y in- ‘%’ and ‘XY in &’ means ‘an X followed by
! =T A o

. 8 Y beetrs in &7 but (A 2) is not samsﬁed if ‘XyY in & means ‘every X in .9’ _

is followed by & Y') : .

+ On this point ef P M vol 3, p. 75 and %256 66 and Quma(l()) p. 136.

t ‘Letter’ always means ‘kind of letter’, not a particular pteurrence.

A changs of letters is homomarphic if places’in % which contained the same letter befors the
changs continue to do so after it; it is ssomorphic if it and its inverse are homomorphic A relation
XRY is ‘preserved under homomorphm changes of letters’ if X RY in & impliés X’ R Y’
in &, where X’ and Y’ replace X and Y in any homomorphic change that turns & into &7
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70 ' M. H. A NEwnan

An equivalence relation, ‘level i in &', is derived from 7 as follows HEX7Y m&"
and X and Y are different letters, it is an y-reduction to replace ¥ everywhere by X
This may give rise to some new 7-relations among the remaining letters, but since the
number of different letters is diminished, repeated p-reductions lead finally to an

+ p-izreducible scheme,, ‘X.islevel with Y in.%” shall mean that X and Y are replaced
by the same letter in &, This equivalence zelation divides the Ietters of & into level-
classes; that containing X is denoted by {X}

* There may be some freedom of choice in the order of y-reductions, but the level-

~ clusses are independent of the order of teduction. Tort if not it must happen that, in the
serics of schemes %, &, %, ., leading by 7-reduction to an irzeducible scheme &,
& scheme &, is changed to 5‘; .1 by a substitution of U for V that puts U into two
places, p and g, filled by different letters in &7, another irreducible form of & It may
be assumed that (&, 5/’n+1) is the first such ﬂ-reductlon in the series. But then 9’, is
obtained from &, by a homomorphie chanbe of letters; and since UpVin %, UgV
in %, where U’ and V/ occupy the places p and g, and hence by hypothesis are different.
Thexefoxe 5" is not y-irreducible, contrary to bypothesis

Tt follows from this result that all p-irreducible forms of & are aiphabetmally
isomorphic.

A relation I"among level-classes is next determmed by the rules

(1) JiX]/me 3G Y} in &

(I'y) I'is transitive.

The relation ‘{X} I"{Y} in &’ holds only if it is dedueible from (I ) and {I,); and.
‘X 'Y in &’ has the same meaning. Cleaily a necessary and sufficient condition that
X7I'Y in & is that either X,y Y, or XfyXl'szy kayYf in &; for some X,'s,
where X, and Y, replace X and Y in

Tinally, the scheme & is stratified if X "X holds for no X, ie if '8 a partial
ordering of the letters in &

j 2 The defihitions of the preceding paragraph Wﬂl be applied to logical formalismas,
| not directly, bub thxough theix cgﬁimwm an expression which will now be:
“explained. :

In most symbolisms thas are tsed in mathematlcal logic, the formulae are built up.
step by step from certain minimal formulae. A single step consists in placing a number
of formulae already constructed in & row, say £, %, . %, and indicating, by &ddmg
an ‘ operasional symbol’ and appropriate blackets Whlch funotion’ of them is wanted
(In some formalisms mere juxtapesition, or inclusion of one formula in a pait of!
brackets, is a method of construction ) If ¥ is the new formula, £,,%,, . , & will be
7 oalled its factors; and factors, factors of factors, and so on, are the segments of £
{ (A formula is Dot & segment of itself ) As an example, in Church’s untyped NI~
c&lculus [Chmch (57], if ¥ and B denote formulae and 1 a variable, we can construot]
the new formulae & = (UB) and Y = (Az%) To give a complete speclﬁca.tmn of X it '
would be necessary to give similar equations for the factors % and B, say % ()d:)@,) !

B = (B€), and 50 on, the process {erminating when all the factors on the fight-hand;

I
: '}' In the main application :_to be made, ‘lovel’ will correspénd roughly to ‘having the same ‘
. type’, ‘I to ‘having higher type’ . ' ‘

|
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Stratified systems of’ loge ' . 71

© gide are minimal formulae. Any formula can be specified in this way by giving the ;
defining equations leading back step by step to the minimal formulae of which it is
. composed For example, if £ is the fm:mula (a{a) (b{ b))} of the A-caloulus, X is seen to.
* pe determined by the equations

— @08 V=@ =W, U= )
. fin all of which only‘ smgle letters appeax as ‘factors’ inside the brackets on the Ilgh%

[hand side

7 It is such sets of eqUAILONS, &, that play the part of the schemes.¥ in paragraph | 194
¢ The letters occurting in equations are therefore object letters, not syntactical names,
 in our discussion The italic capitels U, ¥, W, X, ¥, Z, with or without suffixes, will

i accordingly be used from now on for the lattexs in equations, Gexman ietiers bemg
reserved for the names of the formulae which, in certain instances, are the solutions
of the equations. Clar endon capitals, U, V, .. areused as syntactical names for single

. lesters in equations. ' '

: For the purposes of the general discussion it may be supposed that the ° opera,tlonal .
symbolsare®,®,,P,, ,andareplacedat thebeginning of aformula, mere juxtaposition
and brackéting being excluded (though in discussing particular formalisms the symbols

"7 in ordm&ry use will be Tetained), OUI theory is therefore concerned with seta of formal

¢ equations sich as X = @,YZ, Y = @,7, called ‘@-equations’. For the present the, |
. ¢-equations are restricted only by the condition that each @, shall alwa,ys be followed.
by the same number of letters, and a P-system Is seb up by specifying this number fox
a finite number of @;’s No condition of ‘solubility’ is meosed on the sets of equatlons
(N.B. The symbols @i themselves ate not ‘letters’ in our theory )

‘ .3 A preliminary application of the concepts ot paragraph 1 lea,ds medla.tely to
©  a formal theory of ‘equality’ and ‘solubility’ for such sets of equations, T.et ‘XeY
¥ in &’ mean that the set of equations & contains a pair of equations X = X, X,.. X,
. andY =X, X, X, with identical nght-hand sides. Then e_qualzty in & (X=Y
? iné’)is, by deﬁn}tlon the level-Telation derived as in pamgmph 1, on taking 7 to be e.

)

]

vEhe relation ¢ has the required properties of symmetry and of being preserved under
i a homomorphic change of letters, and letters that are ‘equal’ according to this defini-
tion are in fact those which can be provedlequal by means of the equations € } k
I We now take the relation ‘X y Y in & of paragraph 1 to be ‘¢ contains an equa,tlon '
X = ¢®X, X, X, where Y is one of the letters X", This also is a relation p]:eserved in
@t homomorphic changes. The I“relation derived from it, in combination with ¢ as ‘7,
W) will be denoted by %=, (‘X > Y’ will also be written ‘Y <X’). An e-irreducible set of
‘f!k equatlons is soluble if (1) it is stratified relative to »=, and (2) no letter stands on the
left of more than one equation; and any set & is soluble if its e-reduced form is soluble.
il There must in this case be minimal letters for the partial oxdermg >- T and the system
i can in fact be ‘solved’ in terms of them for the remaining letters, by zepeatedly sub-
-4 stifuting the right-hand sides of equatigns, enclosed in brackets for their left ha,nd
B sides. If there is a single maximal letter, X, & is callsd a defining set for X. '
A formalismis derived from a@-system by,ﬁrst specﬁymc certain mlmmalformulae

-1 ‘X =Y is never used between equation-letters to mean ‘X and Y sre the same letter’
i Letters, X, such that X‘}-Y in& forno Y. .
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(which may be any symbols whatever), the substitution of which for the minimal
letters in the solutions of defining sets gives the formulae of the system, and secondly,

_gtating (possibly) other conditions to be satisfied by a formula, or its defining equations,
“in order that it may be a significant, or well-formed, formula of the system If the

minimal formulae are substituted for the minimal letters in the equations themselves

" of a soluble set, we obtain a prepared set, whose solutions are formulae of the system.

The ‘values’ obtained for letters other than X, when a prepared defining set for X is

-solved, ate the segments, as above defined, of the value of X itself; and the relation

‘2, carried over fiom letters X to their values, becomes ‘is & segment of "

4 The stratification proper of logical formulae is, of course, entirely distinet from
the “solubility’ just defined It depends on relations v angd  which must be specified
sepatately for each @-system, and are subject to norestriction, in the first place, beyond
those Imposed in paragraph 1 o '

Ezample 1 In the system developed in Quine’s ‘ New foundations for mathematical
logic’(7), there are three kinds of equation,

X=(YeZ), X=(UlV), X=@P0Q.

For the stricter, ‘classical’, stratification proposed in (7) ‘X yY in £’ must be defined
t0 mean '€ contains an squation Z = (Y € X)’; and ‘X7 Y’ to mean ‘XeY or Xy U
and Yy U for some U, or Vy X and Vy Y for some V.

The minimal formulae are small italic letters, and for a ‘signiﬁcant’ formula, in
addition to the condition of stratification, the equations must be such that those

" letters, and only those, are minimal that ocour on the right of equations X = (Y €Z)
- Hence the test for stratification, applied dizectly to formulae occurring in the theory,

is as follows 1feither xeuand y€u, or vexand vey, ocour in the formula, replace ¥
throughout by X, and continue thls process as long as possible (ma.kmcr also any pos-
sible e-reductions). If in the final result there is no cycle X;€X, € . €X,E€X;, the

‘originial formula is stratified

5. In order to bring stratification into corzelation with types some restriction on
the relations 7 and'y is necessary. A form of theoxy suficiently general to cover most
extant formalisms, including that of Church(q), will now be ‘describled‘ Some generadi-
zations, enabling Principia Mathematica and some other systems to be brought within
the scope of the theory, are briefly described at the end of the paper 7 '

- The assumptions made in the previous paragraph, about the existence and pro-
perties of the relations y and #, are now replaced by the assumption that any equation
X, =PX, X, X determines a number of positional relations, X,, v, X, i.e. relations
that hoid if, and only if, certain places in the equation are filled by X, and X,, There
ate to be a finite number, 7, of the relations v;, and they are to satisfy |

{A3) if the relation X v, X, follows from- X = QDX X,. .X,, then Xm'yk also
foliows, for A = 1,2, ...,r and some X, A (1 <nhsk) ’

t A simpler test given by Quine in {7), p 78, is not guite correct. See Bernays's review of
the paper (1)

7




Stratrfied systems of logic i3

A (D, y)-system is 6t up by specifying, for a number of operators @;, how many
variableseach takes, and what y,-relations follow fromany equation X = @ XX, Xk,
provided that the relations are positional and satisiy (A :3)

The relations 5 and y ate now defined in terms of the y,: ‘Xy ¥ in &’ means that
Xy;Y in & for some 1, and ‘XY in &’ that one of the following holds:

() XeY;

(my) Uy, X and Uy, Y in & for some U and i;

{n) Xy, U,and Yy, U, in&fori= 1,2,. .7, and some U;

Condition (A1) ig clearly satisfisd, and from the positional character of the y; it
follows that 7 and v satisfy (A2). Hence the definitions and results of the previous
paragraph may be carried over to any (@,y)-system, and to any formalism derived

- from it. (Note that y is not a positional reia,tioni :

Ezample 2. Returning to the formalism of Example 1, we see that there is only one
vy 1eiation, v, and that 7 is defined in accordance with (7,), {1.) and (7,).

Zzample 3. In Chureh’s A-K- caloulus [Chuzch( 5)] there are two kinds of defining
equations, Z = (XY) and Z = (AXY) The stratification introduced in Church(4)

involves two 7y,-elations: the equation Z = (XY) gives Xy, Z and Xy, Y, and
Z = (AXY) gives Zy, Y a.nd Zy,X As an_illusiration congider firgt (f(fx)). Its
equations are X={(fs),Y=(fX) By (72), qu whence, putting @ for X, the two
equations give xy =Y. Puttmcr 2 for ¥ we obtain two copies of the equation x = {fx),

an irreducible set with no y-cycle: the original formula is str atified. S&gnﬁld@r
f fx))). The defining equatlons are
A =(fz), =(fX), Z={(x Y)
in which z, X, ¥ are again level The - Ieduced form of the 1&51: equatlon is Z (:r:x__),

giving 7y, The formula is thet efore not stratified.

6 Types are the formulae of a system in which the minimal formulae ate small
Greek letters, and the only prineciple of construction isto enclose a row of given formulae
in a pair of round brackets T'ypes in general will be denoted by heavy small Greek
letters. A type. is primitive if it consists of a single letter, not in brackess, and, in
accordance with our previous notations, if e 18 (e e, . cxk) the a, are the factors of o, |

A formula is typed by attaching types in a random way to it and its segments
‘Correct’ typing is defined only if the formalism is derived from a (@, y)-system, and,
should then mean that segments of a given formula are so matched with types that
the relations S for types and I' for segments correspond. Since - 1is & partial ordering
of the types, this will ensure that I' is a partial ozdering of the segments, and
hence thab the formula is stratified The object of using types, however, is to avoid
the process of determining the level-classes The eriteria should therefore, while
aiming at the above correlation, be expressed duectl—y in terms of the relations ;.

We consider first the attaching of types to the letters, or Ia.thex to the places, in
P-equations It iz convenient to regard a place to which no type is ad;tachecl as having
‘null type. '
 An r-fold type is defined mductlvely for posfcwe mtegr&l r to be either a primitive
type, or a type with 7 factors, each of which is an 7-fold type
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The following are bhe conditions to be satisfied for a correct Hping:

( 1) Each letter has the same type (or none) at each of its occurrences Vvhen this

j condition is satisfied, we denote the type of X by r({X), and write 7{X) = 8 if the type is

aull If 7{X) is neither null nor primitive, 7,(X) denotes its sth factor

(t,) 7(X)is either null or an r-fold type (where 7 i3 the number of y;- -zelations).

(t;) It Xy, Y, 7(Y)is r,(X).

(t,) A letter satisfying no y,-relation has null type

Condition (£;) implies that, if X y; Y, neither letter has null type. :

A formule,in a formalism derived fxom a (@,v)-system, is cortectly typed by assigning
to its segments the types given to the corresponding letters in a correct typing (if such
- exists) of a prepazed set of defining equations. :

Example ¢ In the formalism of Examples 1 and 2 a single pnmltwe type suffices, :
and the other types are obtained by enclosing it in any number of pairs of brackets.

- We may therefore use the positive integers instead The letters with non-null typesé
are those that appear on the right of equatlons X (Y eZ); and by (3) the type of;

- Z is 1 higher than that of Y.

In the typed A-K-caleulus (without logical constants, Example 3) our rules state
that if Z = (XY), and Z and Y have types « and B, X has the type («f); HZ ={ XY) ]
“and X and Y have the typés « and B, Z has the type (Ba). These are the tules given by

(;huI oh(4), save that there may now be any number of different primitive types.

7. Difficulties may arise in connexion with letters of the kind occuriing in ().
Consider, a8 an illustration, the (@, 'y) system, P, with three kinds of equa.tlon

X=0,Y, X=0,0V, W=0XYZ,

and a single relation v,. Let the first equation imply no y,-relation, the second X v U
and Xy, V, the thitd Yy, Z. In this system consider the equations

YU Z=0V, X=0,UV, W=0,XYZ (1)

(a, defining set). The following typing satisfles (¢,) to (t,;)
Yoo =00, Zy=0Y, Xun=0UN, W =@, X yYipZy,
but the set of equations is not stratified. For the relations Xy, U and X'ylV give

\
|
| Uy¥. On putting U for V the first two equations give Y = Z, and this, combined
1{ with ¥y, Z ({rom the last equa.tlon) gives a y-cycle. Moreover, in the solution

i . .

‘ W = Oy((P,UV) (2. U) (B, V)
| of the equations, the types, (§) and 8, of the last two factors depend not merely on

their own structure, but on that of the first factor, a s1tuat10n whlch seems to be at

- variance with the idea of a'logical type -

Both these difficulties could be overcome by requiring, in piace of (¢}, that any |

- letter occurring on the left of an isolating equation in & shall have null type; where
X, =®X,X, X, is an isolating equation if it implies no yt—xela,‘olon involving X,.

i The letters ¥ and Z are then required to be untyped in (1), and no correct typing is
possible. But apart fiom being rather unnatural, this stronger condition Would merely
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Stratified systems of logic 75

displace the difficulty, for with the new rule the last three equations of (1), which form
a stratified set, would be untypeable " '

It seems that thisis a point where the ideas of stratification and typing divezge. The
gystem P adinits a sati’sfa,ctbry definition of stratification, but not a satisfactory system
of types, if all sets of equations are admitted We shall therefore mtzoduce Y Iest.nctlon
which excludes sueh sets as (1), '

8 A letter ocewrring in a set of equations, but satisfying no y,-relation, is said to
be isolated A set of equations is non-singular if all letters that appear on the left of

% 1solat1ng equations ars isolated
g Sast Pr L

Tazorzm 1. The equotion X = OX, X, . X, determines the type of X absolutely m
non-singular sets, in terms of the types of Xl, Xy Xy

The meaning is that if the equation Y = DY, Y, . Y, oceursin the same ot a.nothex
correctly typed non-singular set, and # 1 7(X;) = (Y ), then 7(X). = 7(Y).

If the equation is an isolating one, both X and Y are isolated, and by {ty) have hull
type. If not, either, for some i'and b, X, v; X follows from the equation, and then
Y,y: Y, giving 7(X) = 7,(X;) = 7,(Y;) = 7(Y); or, by (A3), Xy, X, fori= 1,2, 7
and some n;’s; and then Yy, Y, , and

T(X) = (r(X ) 7(X,,) . (X))
= (Y)Y - T(Y)) = 7(Y).
Terorem 2 If r{X) = +(Y) in a correct typing of any set &, and if & is the result of

- substituting X everywhere for Y, the same fypingl of &' is correct.

Condition () is satisfied since 7(X) = r{Y), (f,) and (t;) by theixl'positiona.i character.

" As Iegards (84)7 if & lettber, Z, other than X is isolated in & it is isolated in &, and

T(Z) = 0; a,nd if X is isolated in & it is a fortiord isolated in &

TEEOREM 3. A level-class in a non-singidar set exther consists entir ely of isolated Zetters
or else containg none.

The theorem is certainly true of an n-irreducible set, since each level-class then
contains only one letter. Hernce if it is false for a set £, the paired lettersin one of the
p-reductions leading from & to &, must be an isolated letter, X, and a non- -isolated
letter; Yy, with X, 7 Y, This relation 5 cannot follow from (772} or (775); since X, satisfies
no y,telation. It therefore follows from (7,), say

X =0XX,. X, and Y, = 80X, X,. . X,

Since Y, is a non-isolated letter these are not isolating equations, Hence the first of
them lInPlleS a v,-relation invelving X, contrary t6 the assumption that X, is isolated.
In view of this result we may speak of ‘isolated’ and ‘non-isolated level-classes’ in |
non-singular sets of equations. All the members of an isolated levei- class in & ate equal
in & .
t The use of ‘=" between types to mean “is identical with’ can hardly be confused with the

formal ‘=’ betweén equation-letters
t Le. the sams distribution of types ameng the places in il
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CoROLLARY 1 Ina non-singular set the tsolated level-classes are all lowest level-classes. |

COROLLARY 2 [f & is non-singular, & is non-singular. Let X, = €X, X, X, be
an isolating equation in &, This corresponds to at least one equation Y, = oY. Y, . . Y,
in & where X, is (Y,); Since the Y-equation is also isolating Y, is isolated in &, and
therefore all memhers of {Y,} are isolated But if X, satisfied a y,-relation in &', some
original of X, in &, ie some member of {Y}, Woulcl satisly a y,-relation in & Therefore
X, is isolated in ;.

TaroreM 4 4 necessary and sufficient condition that o non-singular set of eqmtions :
wdmat o correct typing s that it be siratrfied

Necessary Let the typing be 7 It will be shown that if an y-reduction twins &
into &, the same typing of &” is correct. In view of Theorem 2 it is sufficient to show
that f X9 Y in &, 7(X) = r(¥):

() if XnY by (1), say X =X, X, X, and Y = 0%, X, - X, 7(X) = 7(Y) by

Theorem 1;

(i) if X7 Y by (7,), say Uy;X and Uy, Y, 7(X) = 7(U) = 7(¥) by (ts};

(i) if XyY by (9,), say Xy, U;and Yy, U fori = 1,2, .7, '

(X = (r(U)r(Uy) ... 7(U,)) = 7(Y) by (I} and (&)

Repeated application of this result shows that the -irreducible form & of & is cor-

rectly t‘y‘ped byr I é“' contained a y-cycle, X, v, Xy Vp, X,, it would follow that
(X)) >7(X,) > .. % r(X,), which is impossible, since ‘>’ is a partial ordering.

Suﬁic@ent We shall ﬁ:rst assign types to the letters of &, (a non-singular set, by
Theorem 3, Corollary 2). Let null type be assigned to the isolated letters, and arbitrary
r-fold types to the remaining lowest-level letters. Let it be assumed inductively that
types have been assigned to all the letters of some lower sectiont, S, including all the
lowest-level letters. If not all letters of £ are in S there is at; least one, X, notin 8, whose -
Vi descendents are ail in 8, for every 7. The addition of X to S gives a new lower section
By the conchtmn (A 3), X satisfies Xy, Y, for ¢ = 1,2, . 7 and some letters Y, Since
& 18 y- -irreducible there is, by (7,), only one Y, for each 1, and by the inductive hypo-
thes1s a type 7(Y,) has already been assigned to Y; We assign to X the Sype
(r(Yy)r{Yy) .. 7(¥,)) In thzs way every non-isolated letter of & receives a non-null
type, and the conditions (f,) to (f,) are evidently ali satisfied. We now assign to each -
letter, X, in & the type of X, in &, The conditions (¢,) and (;) are clearly satisfied.
(t): it Xy, Yind, X,y Y,in &, and therefore 7,(X) = 7(Y). (,): if X is isolated in
& X, is isolated in &; for the originals of X, all belong to {X}, and therefore satisfy
no y;-relation in ¢ (Theorem 3). Therefore 7(X) == 7(X;) = 0.

CoroLLARY 1. In a correct typing of a non-singular sel level letters have the same type

Cororrary 2 In a correct typing of a non—smgul&r set the types of the non-isolated
lowest level-classes can be chosen arbitrarily, and the other types are then uniquely deter-
mined. ' ' :

1 The terminology is chosen as if ‘7" were ‘greater than’ or ‘higher than’. A lowesi- level
Ietter, X, is ome such that X I'Y for no Y {the words “minimal’ and ‘maximal’ being reserved for
the relation }) A Tower section of the letters of & is a subset, of them, S, such that 1f X eSS and
Xry then YEeS .
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Cororrary 3 A4 correct typing of & deiermines o correct typing of &, and wice versa

TrrorEM 5. If i and rParecorrect typings of any two sets, & and &, and 7H(X) = r3(X)
 for all common letters, the combined typing 1s correct in & v &yt ' '

Let the combined typing be denoted by v Conditions (f;) and (t,) ate clearly satisfied.
(t): 1f Xy, Y in & v &, then Xy, Y in &, for j =1 or 2, and '

T{X) = 7i(X) = F(Y) = 7(¥).

1

{t;): a1 isolated letter, X, méa v &, is 1solated inboth &, and &,, and therefore 'r( =0

TrporEy 8 1 f in a correct typmg, T, of @ non- smgulm set &, all non-isolated lowest
level-classes receive different primitive types, a sufficient condition that two non-isolated
letters, X and Y, be level is that 7(X) = 7(Y).

Let r(X)=7(Y) = a0 We proceed by induction on thé height of a, i e the
maximum length of & series o 81 =p2 . B¢ If « is primitive, the agsertion isfrue
by hypothesis Suppose, then, that « = (e, ... «,). Then X and Y are not lowest- level
letters, and therefore, by (A 3), X’in- Y in ior 1=1,2, .,7;and by (ta)

(X)) = o = 7(¥,)

-Hence, by an inductive hypothesis, X; is level with Y, It follows that in &, an
y-irreducible form of &, (X;);is (Yy);; and hence, since X, v, (X,); and Y,7; (Y} it
follows that X,7Y,; ie since &y is y-irredueible, X, is Y, Therefore X and Y arelevel

9. Restricted alphabets A feature of Church’s Theory of Types [Church(4)], which
corresponds wel with the meaning attributed to types-in logieal formulae, is the
requirement that certain symbols shall have types of a prescribed kind whenever t.hey
appear. In the following paragraphs it will be shown how, from a given (@, y)-syster,
we may derive, first, a ¢ (@, p)-system’ in ‘which stratification is defined in a modified
sense, and secondly a ‘(®,f)-system’, in which the modified typings are described;
and it will be shown that there is a comp}ete correspondence between the two kinds
of system. '

In the rest of the paper it is assumed that, in the (@; i systems considered, there are
no isolating equations

We suppose the letters oocuumg in equations divided into & number of atphabets,
one of which consistz of the italic capitals, U, ¥V, ..., so far used, now called the X-
alphabet. The other alphabets, called A-alphabets, Wﬂli consist of the letters 4, 4,, _

, By, By, ..., etc,, the letter denotmg the alphabet, and the suffixes the different .
membexs of it. Each alphabet eontains either an infinity of letters, or just one, which
is then called an tnvariant. In applications to formalisms the A-alphabets include all

_the minimal formulae, so that our sets of equations now includé the ‘prepared sets’
of paragraph 3. This name will still be used for soluble sets of equations in which the
minimal letters (relative to <) belong to A-alphabets, and the others to X-alphabets
An alphabetical change of letters is one in which each letter is changed if at all, into
another of the same alphabet _ .

t & w &, is the set of all equations in the two sets & and &, _
1 In the general theery For particular examples the A alphabets may consist of any gymbols.
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Toderivea (@, p)-system from a given (P, y)-system with X- and A-alphabets, certain
invariants are first declared o be basic; and a set of equations is b-stratified if it is
stratified, and distinet basic letters belong to distinct lowest level-classes Secondly,
with certain A-alphabets there are associated classes of sets, &, of equations, each
class consisting of all the alphabetical isomorphs of one of its members. The following

(P 1) a set of equations, & contains oceurrerces of just one letter, A, of the ass0-
clated A-alphabet, and apart from this only basic invariants and X-letters;

(P 2) for basic invariants the sets & are null; :

(P 3) every set & is b-stratified. - '

In the circumstances of (P 1) the set 2 iscalled a pedzgme of A,anddencted by @( )

This completes the description o of (@, p)-systems.

A number of pedigrees, (A), Z(B), . ., are adjusted relative to each other and to
another set &, if no letter except (posszbly) invaiiants and A, B, . occurs in more
than one set. For a givend,, A, B, .. itis always posmble to choose ad]ust.ed forms of
the pedigrees. A closure, 6], of a set é’ is formed by adding to & pedigrees of all A-letters -
cecurring in it, adjusted for & and for each other -[&] us its own closure, since the new
letters have no pedigrees.

Asetofequations, &, In a (@, p)-system, P, is a-stratified 1f a closure of £ is b-gtratified
In a formalism derived from P a formula is a-staatified if its set of defining equations
is a-stratified. ' h '

Ezample 5 In Church’s formalism (C)(4) the symbols [y, p, .., With various
suffixes, must be regarded as different ininimal formulae, and to differentiate between
them suffixes of a puzely distinguishing kind will be placed on the left, thus, ,J7 oloads
oL yop0 -, Bte. In the untyped theory lﬂ, oI7, .. forrn ome infinite alphabet. The
specification of (C) as a (P, p)-system, (C, p), is (usmg ~ and v for Church’s N and 4):

-

Invariants: . ~, v, B,

A-alphabet 1 (‘variables’): a,b, ¢, ...,

- A-alphabet 2: lﬂ,'zﬁ, o

A-alphabet 3: . AR )

The @-equations and yl-rela.tmns are those ahe&dy given (Example 3) The only
basic invariant is B. The pedigrees are:

<

- B=(~-B),

v: X =(vB), B=(XB),

alphabet 1: _ none, ' )
alphabet 2: B =(IIX), B=(XT),

alphabet 3: = (uX), B= (X ¥)

The letter B has no meaning; its function is solely to regulate stratification by
1epresenting the ‘propositional” stratum.
The well-formed formulae of the system are the solutions of a-stratified, prepared,
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defining sets of equations, subject to the condition that in an equation X = {AAY)
the Jetter A raust belong to the ‘varlables” alphabet, @, b,¢, . T - N

Tazorem 7 Of two alphabetically isomorphic sets of egmtwns both are a,-stmtzﬁed
or neither :

An alphabetical isomorphism betweeh &, and &, can be extended to one be’bvﬁf_een
[£,] and [&,] by means of those given to exist between the pedigrees, in [€;] and [&3],
of A-letters of & and their correlates in &, The adjustment of the pedigrees ensures
that this is indeed an isomorphism between {&] and [&,]. Hence if [£}] is stratified
30 i8 [&}], and since the isomorphism is an alphabetical one all invariants correspond

to themselves. Hence if [#] is b-stratified [€,] is also.

CoroLrary. The property of being a-stratified ig independent of the choice.of the
pedigrees in [£]

10 Restricted types. The léttexs £, &, . are now regarded as variable types, and
t\}'pes in general as functions, types that do not contain any £; are consiants (Any
isbmorphic change among the £.s is considéred to give the same function with different
‘variables ) A walice of a type-function is dbtained by substituting arbitrary constant
ty‘pes for the variables.

A (D, t)-system is derived from a (P, y)-system with A- and X-alphabets, and Wﬁih '

r y-1elations, by first associating fixed primitive constant types (all different}, called the
basic types, with certain invariants; and secondly associating with each A-alphabet
{A}, an r-fold Wpe $(A), composed entirely of basic types and variables. The name
type-funciron is now conﬁned to such types. An a-correct typing of a set of equations
in a (@, )-system is one that satisfes the conditions (i) to (£,), and also

(£;) every A-letter has as type a value of the type function assigned to its alphabet.

Ezample 6. The (D, t)-system, (C, t); derived from (C) bas P-equations, a,lpha,bets:
and yjy-relations as in Example 5, but instead of specﬂymg basic invariants: and
pedigrees we assign types as follows, o being the only basic type: I

B,. ~oaw Yifoola)s ‘ '

alphabet 1: type £;, alphabet 2: type (o(oé’l}); alphabet 3: type (£, 06EN).

The relation between {C, p) and (C, ) will appear in the following paragraphs.

11. In any (&, t)-system a blank typing of a set & is a typing, satisfying (t;) to (),
in which the basic types are properly asmgned and all othe:t lowest level-classes have
types £, all different,

A (@, p)-system, P, and a (@, t)system, T, derived from the same ((15 ¥)- system .
correspond, if, first; the basic invariants in P are identical with the invariants that
receive basic types in T; and secondly, each pedigree #(A) admits a blank typmg, s
such that r(A) is ¢(A), the function assigned to A in T. The relations between corre-

* sponding (@, p}- and (@, t)-systems are expressed in the following three theorems.

I Bince such meanmgless conbinations as (II~) are (for formal convenience} admitted in (C),
it seems unnecessary to forbid B to be a minimal detter in the defining equetions: -

¢ The other special type, ¢, used in Church(4), is needed only in connexion with the ‘axioms
and rules of procedure




80 M H A Newnman

THEOﬁEM 8 If a (D, p)-system, P, and a (@, t)-system, T, correspond, a necessafy
and sufficient condition that a sel & be a-stratified in P is that it admat ar a-typing 1 T

TrmoruM 9. Given any (D, p)-system, a sei of type-funciions con be found, the
gssociation of which with the A-alphabets makes the wnderlying (B,7)-system wnio @
corresponding (P, 1)-system ' _

For the third theorem we need an additional postulate:

(A 4) there exists a set of equations & which implies X y; X,; for i=1,2, .7,
and no other y,-relation :

Trrorzm 10. Given any (@, t)-system satisfiying (A 4), a set of pedigress can be found
which make the underlying (P, v)-system into @ corresponding (@, p)-system.

Proof of Theorem 8. Necessary. Tf [£] is b-stratified, by Corollary 2 of Theorem 4 it
admits a correct typing, 7, in which the basic invariants have their basic t'ypes,‘ and
other lowest level-classes have constant types. This determines a typing of each
pedigree, Z(A), contained in [€7, differing from a blank typing only in that each §; is
replaced by a constant type «; Hence 7(A) is a value of d{A), and the typing 7 of &
is a-correct - I

Sufficient. Let T be an a-correet ty‘piﬁg of & and A dny A-letter in & Let ¢ be the
function ¢{A) with a definitely chosen set of variables, and let o be that blank typing
of Z(A) which gives A the type ¢ By the definition of an a-correct typing, T(A) is
obtained from ¢ by substituting a constant type, a;, for each & occurting in it. Let
7, be the correct fypmg of P(A) obtained from the typing o by assigning the types o,
instead of £; to the lowest-leyel classes “Then (Theorem 4, Corollary 2) T5(A} = 7(A)

"~ Let the pedigrees of all other A-letters in & be similarly typed. Since, in the typings

T, Ta, Tgs - 0f & and adjusted pedigrees (A}, PZ(B), . ., all common lefters receive
the same types, the combination of 7, Ty, g, -.: 18; by Theorem 5,3 correct typing of
[£7; and hence, by Theorer 4, [£] is stratified, Since the basic invariants 1eceive
primitive types, [¢] is b-stratified, ie. & is g-stratified. ' 3

Proof of Theorem 9. Tet primitive constant types, all different, be assigned to the
basic invariants as basic types, and take ¢(A) to be the type that A receivesina blank
typing of the b-stratified set Z(A.). Tt follows immediately from the definition that the
(@, t)-system so formed corresponds to the original (&, p)-system. | '

Proof of Theorem 10 Let the basic types be By, Ba - » Bgr a4 the invariants to which
they are assigned be B!, B%, . , B These we declare to be the basic invariants of the
(@, p)-system. (This fixes the meaning of ‘p-gtratification’.)

A rule will first be given for associating & set of equations, (X, ¢}, (possibly empty)
with any X-letter, X, and any r-fold type, ¢ (constant o1 function), where 7 is the
number of y;-relations in the system For any X we take &'(X, a} to be empty if & is
primitive. Let ¢, be anys -fold non-primitive type and X, any X-letter. We malke the
inductive hypothesis that, for types ¢ of height ¥ Jess than that of ¢, and for any X,
&(X, P) 18 al;eady defined ag & b-stratified set of equations, such that i) €(X, ) 1s
null if, and only if, ¢ is primitive; further, if &(X; ¢) is not null, (i) a suitable blank

+ Cf the proof of Theorem 6




2
i)

S

!"“I“::— "L"‘ T

Stratified systems of logac 81 -

typing of &{X, @) gwes X the type ¢, (i), ) each lowest level-class contams a single
letter and (iv} all letters occunmg are X-lettezs or basic invariants. ' (These are
all verified for the primitive types ) Let o be (¢ by P,). Let X-letters, Y3, all
different, be chosen, one for each of the variables £, in ¢,, and let X, be 7 X-letters
different from the Y, and sach other. Tor each 1, if £(X;, &,) is not null, let o* be
“a blank typing of it such that o (X;)is ¢; Let the X-letters of &(X,, ¢,) other
than X, be so adjusted that the type &, is borne by Y, only, but apart from this ne
“$wo of the sets have a common X-letter, and none of them contams X, Finally let
& Xy Xy, -, X ) be a set of equations which imply X, ¥, X,, fori= 1,2, ,7,and no
other y,-relations (A 4) From the positional character of the ¥;-relations, any letter '
other than X, X, . X, in &, can be altered to X, without disturbing the relations
Xgv: X, 01 mtroduclng any new ones: this we suppose alzea,dy done, The set &(X,, qb
is defined to be the union of the adjusted sets &(X;, ¢;) 1 =1,2,..,7) and the set

.6, (Xo,LIl,HZ, .., H,), where H;is Y, if &, is Eq, B gi':l is f#;, and X 1f it is neither.

(Note that if H, is B, £(X,. ¢;) is null, and X; does not oceur in &(X,, ¢, )

Phe induciive hypothesis is true of &(X,, d,) Parts (i) and (iv) azre evidently true.
Poart (i) The required typing, %, is the combination of the o¥’s with the types ¢, for
X, and &, for H; (1 =1,2,.. ,7) Since the only relations in &, are Xov: Hy, for
t=1,2,. ,7,8,1s eoneotl}f typed; and since letters coramon to any two sets have the
same type in both, the combmatlon of all the types is & correct typing of £(X,, Pg)
{ie safisfiest, to t,). Since H, is an invariant if, and only if, ¢, is £}, and since in ¢
basic types are correctly a,smgned the same is frue of ¢® The $yping is4a ‘blank’ one,
since two X-letters carry the same type &, only if they aze identical. Part (iii). A lowest
level-class bears the type £, or f;, and contains the single letter Y, 01 B respectwel‘y

The inductive definition of &(X, ) is therefore complet& We assign as pedigrees to
every A-letter, A, the set &(A, ¢) and its alphabetlcal isomoiphs, where ¢ is ¢{A),
The conditions (P 1) and (P 2) are evidently satisfied, and it has just been proved that
(P 3) holds A (P, p)-system has therefore been. defined, which clearly conesponds to

the orlglnal (D, £)-system

Example 7. 1f this process is applied to (G,1), (Example 6), taking &, (XO, Xl,X )
to be X, = (X,X,), the pedigrees found.for ~, v, and alphabets 1 and 2 are preclseiy
those given in Example 5. -

12 Some gene,mliza;tibns {These are concerned with the ‘(®,y) -theory, without
special alphabets or invariants.) _ - :

I The single set of relations y; may be replaced by a finite or inifinite number of

sets of relations v (=1,2,3, 5i=1, 2, 1)
The a,ssumptlon (A 3) must be repla.ced by
(A*3) if the relation X, v, X, follows from X, =0X, X, . X,c, X, thX also
follows, for the same jand b= 1,2, . 7 . S

3

and the following new assumption is required:

(AB)yifr; =r,thenj=Fk
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~ate replaced by the new condition
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(This apparently rather arbitrary agsumption merely expresses the fact that only
o7 $r; need the ;; and Yin be distinguished } In the definition of stratification the
new condition must be added, that the same X shall not satisfy relations X'y?-',;Y nd
and Xy Z in & for j+k n the definition of a correct typing conditions (t,) and (4)

(%) if Xy ¥, r(X) has 7 factors, and 7,(X) is 7{Y).

All the r_aaizl theorems survive these changes, with Iittle modification of the proofs.
From (A* 3) and the new st atiﬁqation condition it follows that in a st atified &; a letter
which is not at the 1owesh level has a single set of descendents Yy, Y,, . . Y, with
X v,; ¥, and hence in Theorem 4 we may take 7(X) to be (r(Y) 7(Ya) - T(¥5)) {(The
condition {A 5} is used in the proof of Theorem 6.) ' : :

Example 8. In Principia M athematica the stratification underly'ing;?the ‘simple’
theory of types {as modified by Chwistek, Ramsey, Carnap and otherst) is applied
only to the variables Itisnot a.ffected_by the distribution of the logical constants and
quantifiers, bub depends only on +he functional inter-relation of the letters The
relevant ®-equations therefore have the form '

X = f(xla xz: i ,xj}l

and this gives [ 7% fori=1,2, . ,j@;=7j) the only y-relations.

_Another formalism in which the y-relations fall into groups is considered in the next,

example.

II A number of further possibi]iﬁes are illustiated by the system developed by
Quine in his System of Logistic. Although this system hag been superseded by others
in Quine’s own Wwritings, it is of interest to see how the use of pedigree equations
gimplifies the specification of complicated systems.} _ '

The P-equations are of the forms _

X =y}, X=Yz, X=(V.2)
There are three y-1elations, falling into a group of one, ¥u {r, = 1), and a group of two,
v 204 Vo (T2 = 2). Each of the equations X = [Y] and X = Yz gives X vy, Y, and
X = (Y,Z) gives Xme and Xv,Z In addition, & pair of equa,ﬁions X =YZ and
Z = (U,V)iné& togetber give Uy Viné _ _

Certain equations have pedigrees which must be added to give their ‘closures’ when
considering stratification:

X - [Y] has the pedigree Z = XU, U= (Y, V),
X = 97 has the pedigree Z = (U, V)

The formulae admitted into Quine’s calculus are the solutions of prepared defining
sets of equations (the minimal formulae being the letters of a single infinite italic
alpha,bet), such that (1) the closure is stratified, (2) in all equations X = S?Z, Yisa

minimal letter.

t See, e g Camap(2), PP 84 ff.
$ The briefest specification hitherto given is in Church’s teview (3).

b2l
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A cotrect typing in our sense is identical with Quine’s if (2)and (aP) ate replaced by
a! and ot"ﬂ?: respectively, and only one primitive type, A, is used Foi: X =[Ylit
ollows from the pedigrée equations that Yy, V, and hence that 7{Y) is of the form
(o) X = YZ,lesV, in the’pedigree equation, have type o Then 7(U) is {o), and T(Z)
is {{e) ), which is of the prescribed form for a ‘propositional’ formula
The system differs from those considered in this paper, first by the presence of
pedigrees of equations, secondly in that ¥y, is not positional It is, however, preserved
under homomorphic changes, and all the main theorems remain true. Nofe,in particular
that Theorem 5 holds. For if X = ¥Zisin & and Z = (U, V) is in &,, the first shows "
that 73(Z) = rY{Z) = ({¢) &), and therefore from the second r2(U) = (a), r3(V) =g, as
required by the relation Uy;; V, which holds in the combined set &, v &} '

A
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McCulloch and Pitts, however, go further a:}d deal with networks invelving such reentrant

sophical Seciety, vol. 39 (1943), pp. 69-83.
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The central problem is this: Given a time parameter { and a condition ¢{2) concerning
the times of exeitation of the afferent neurons of 2 net, find a method of constructing the net
so0-that a specified efferent neuron will fire {(be in a state of excitation ) at time ¢ if and only if
the condition ¢ (¢} is satisfied  If 2 sufficient time interval is allowed between the firing of
the afferent neurons and the firing of the eferent neuron, the required network can zlways be
constructed without difficulty, at least if ¢(t) does ot involve quantifiers This is true
because the probiem is easily solved for conditions () & ()], [o(t) & ~p () ), and [o(t) v
#(¢)]if it can be solved for ¢(¢) and ¢ (1) Conversely the net may be already given and we
may seek a condition on the afferent neuvrons necessary and sufficient for firing of some
specified neuren of the net at a time ¢. This converse problem can be easily solved, the
authors show, if the net does not involve neural pathways that return upon themselves

pathways and also with conditions involving quantifiers, but proper evaluation of this part
of their theory is practically impossible because of numerous errors Freperic B Frron

H-D. Lanpagn, W 8 McCurrocs, and Watrer Proos A statisiical consequence of the
logical calculus of nervous mets Ibid , pp 135-137
As the title implies, this is a study of the statiztical relations among the frequencies of
neuron impulses and is based on the results of the paper reviewed immediately above
' Frepsric B. Frrem

- . - . .HvﬁT_\’—.-’—'_\
M. H A Nzwwmaw Stratified sysiems of logic  Proceedings of the Cambridge Philo-

_ This paper is a contribution to what Carnap (IV 82) would call “general syntax,” and
is related to papers on “Bemiotik” by students of Scholz (Hermes, IV 87,and Schréter, VIIT -
77, IX 20). ‘ . : .

The author introduces, as 2 methed in logical syntax, the use of “defining equations’’
for the formulas of 2 Jogical formalism {object language}.

E g, in the system of Quine’s New foundations (II 86}, the formula {z) (¥} {(zey)| (yex)}
has the defining equations: X = (z) Y, Y= (g%, Z= (UV}, U = (zey), V = (yex).
Here the small italic letters are the letters {“‘minimal formulas”) of Quine’s system itself,
and the capital italic letters are new letters introduced for the purpose. The defining equa-
tions constitute in obvious fashion an naiysis oz description of the formula;and by a process
of repeated substitution the equations can he “‘salved”’ for the capital letters in terms of the
small lefters, the “value' obtained for X being the formula itself, and the value for each
of the other capital letters being one of the “segments’’ of the formula. —Using bold capital
letters as syntactical variables (for italic small and capital letters), we have for this system
that defining equations must have one of the three forms: Xi= (YeZ), Xo = (UV), X, =
(P)Q  If a set of such equations can be solved uniquely for the italic capital letters, as
above, and if this solution reveals a single “maximal letter”’ X, the set of equations is said
to be a “defining set” for X, or 2 defining set of the formula obtained as & value for X In
order that this latter formula be “‘significant,”’ or well-formed, the condition must be imposed
on the defining equations severally that the letters Y, Z, P and those only are smal} italic
letters (are minimal).

As another example, for the A- K-caleulus of the reviewer’s Calruli of a~conversion (VI
171), defining equations have one of the two forms, X, = (YZ) and X, = (\PQ), where, for
significance, the condition must be imposed that P be minimal. In particular the formula
(}\a({a(ac))(b(ab)))_) hes the defining equations: X = (a¥), ¥ = (ZU), 2= (aV), U =
W), V = {ac), W = (ab)

In the two preceding examples we have particular cases of what the auther calls a ‘-
system 7

The author explicitly says that his italic capitais are not syntactieal. But it would seem
to the reviewer desirable to make the relatively minor change of construing these italic
capitals as syntactical variables, namely as variables for formulas of the object language
The small italic letters in the examples above then belong to the object language, but are
also used autonymously in the syntax language. And the bold capitals are metasyntactical
variables, i.e., they are variables for syntactical letters .

i . ki
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On this basis it would be possible to make a slight reformulation and generalization of the
author’s definition of a @-system, as follows. We begin with a set of operations @i, ¥,
upen an initially undefined set of objects. These objects are eventually to be identified as
formaulas.of the object language and may therefore from the beginning be called ‘“Yormulas’’;
italic capitals will be used as variables for them. If each &;operatesupona specified number
k. of formulas, to yleld a formuia, and if the &’s are independent in the sense that
B, X X ‘Xk.; = @jYLYE "Yi:,- always 'lmplies 7= ‘_',", X = Yl, X, = Yoo, Xi:,' = Yk,',
then the ®;'s together constitute a ®-system. If in & set of “$.gquations,” ie., a seb of
equations U = &UiU: U, V=8 ViVie Vi, % = ®yF1Z2 + In,, it 15 possible to
distinguish some of the varizbles (italic capitals) as minimal in such & way that the equa-
tions can be soived uniquely for the other letters in terms of the minimal letters, and if this
solution reveals a single maximal letter X, the set of equations is called s defining set for X
A ‘formalism’’ is derived from z ®-system by specifying certain minimal formulas, the
substitution of which for the minimal letters in the solutions of defining sets gives
the formulas of the formalism, and also (possibly) stating other conditions to be satisfied
by the defining equations in order that a formuia be significant - Ti the minimal formulas
are substituted for the minimal letters in a defining set of equations, we obtain a ‘‘prepared

set "' A prepared set of equations ay also be spoken of as a defining sef, and in the two

particular examples given above it is actually prepared sets which were used

A ($, v)-system is obtained from a #.system by introducing a sel of r binary relations
Y1, Y1, s ve, BRd specifying for certain ®;'s that from the  presence of any equation
X, =9, XX, -ij_ certain vi-relations follow between the letters Xo, X1, 2Kk provided,
first, that the relations . are tpositional’ in the sense that, for = given j, XnyiEna follows
from the presence of the equation X, = 3, X, X, X*:‘ if and only if certain places in the
equation are filled by X and X,, and secondly, that if X,.p:Xa follows from the presence of
X, = &;XXe in then for every vz (I1Sh=r} imw.Xnﬁ follows for some X. {1 En,=ky).
Given a set of $-equations, XyY is used to mean that Xy:¥ for some vy, and XyY is used to
mean that either (1) there are two equations X = &UUs Ui, ¥ = U Uy Uy, with
identical right-hand sides, or (2) for some U and some v;, Uyp:X and Uy Y, or (8) for every
~; there is some U such that Xy Usand ¥y U: I XnYina given sef of &-equations, it isan
n-redietion to replace ¥ everywhere by X; this may give rise to new p-relations among the
remaining letters, but repetitions of the process must lead finally to an g-irreducible set of

.equations. X issaid to be “level” with Y ina given set of #$-equations if, upon reducing the

set to an p-irreducible set as just described, X and ¥ are replaced by the same letter The
class of letters leval with X is denoted by {X}, and is called a “lavel-class.”” A relation T
among level-clagses is introduced by the rules that if Xvy¥ then |X!T{Y],and that T'is transi-
tive—i e , the relation T holds between two level-classes when and only when its doing so
follows from these two rules A setof $-equations, or the formula determined by a defining
set of equations, is “stratified”” if {X}I'{X] holds for ne X, s )

For example, in the system of Quine’s New foundations, 7 = 1, and ZnY follows from the
preserice of an equation X, = (YZ). Inther-K-caleulus,r = 2,and for X, = (YZ} we have
Yy, X, and Y+,Z, while for Xz = (APQ) we have oy Q and XoyP  The author applies bis
general theory to determination of stratification of formulas of these two formalisms—that
the matter is not trivial even in the relatively simple case of Quine’s system is seen from an
error in this regard which was made in Quine’s original paper and corrected in Bernays's
review (1T 86) ) )

“Types’ are the formulas of a system in which the minimal formulas are small Greek
letters, and the only principle of construciion is to enciose & finite row of given formulas in a
pair of parentheses Bold small Greek letters are used as syntactical variables for this sys-

tem. i e , as variables for types. A type is “primitive” if it consists of a single letter not in
I 1 " .

parentheses, and if @ is (mey - ox) then my, o, , oy are the “factora’ of e A “k-foid
type” is defined inductively to be either a primitive type or a type with k factors each of
which is k-fold. A “‘correct typing’' = of a set of @ equations satisfies the four conditions:
(1) each lester is sssigned the same type ab each of its occurrences, or else is assigned no type
af any of its occurrences (the type sssigned to X is denoted by 7(X) and if no type is as-
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signed to X then 7(X) = 0, moreover the 7th factor of »{X) is denoted by +:(X)); (2) if
7(&) # 0 then r(X) isan r-fold type, where r is the numberof y;-relations; (3) if Xv;Y then
X and Y are assigned types such that +(¥) = r.(X); (4) no type is assigned to a letter satis-
fying no y,-relation. In a formalism derived from s (3, y)-system, a correct typing of a
tormule is obiained by assigning to its segments the same types assigned to the corresponding
letters in a eorrect typing (if such exists) of a prepared set of defining equations.

As examples, we may apply this scheme of” typing to the system of New foundations,
using a single primitive type A; ar we may apply it to the A-K-calculus, vsing any number of f?
primitive types. In the Iatter case, 1f two primitive types « and o are ubed, the typings
obtained are those of the reviewer’s A farmulahon of the simple theory of types (V 114).

An equation X; = ;XX Xk,_ is an “isolating equation’ if it yields no v;-relation ‘

involving Xo . A letter ocourring in a set of equations is “isclated’ if it satisfies no vi-rela-
tion. A set of equations is “‘non-singular’’ if ail letters that appear on the left of isolating t
£quations are isolated. Among other results concerning correct typing, levelness, level- i
classes, and stratification, it is proved that necessary and sufficient condition that & TOT-
singular set of ®-equations admil a-correct lyping is that it be siralified
The foregoing is an outline of the main points in the first eight sections of the paper, here
given at greater length than vsuai, because of the large amount of new devices and terminol-
~ogy The four remaining sectlons are concerned with certain extensions of the method
which are necessary in order to deal with more complex formalisms  One of these extensions
consists in introducing conventions according to which a given set of ®-equations is enlarged i
by adding to it certain sets of squations called “‘pedigrees,” the enlarged set of eguations '
being then considered in defiring stratification. This is necessary in particalar in con--
nection with formalisms in which eertain symbols are required to have types of a prescribed
kind (the system of the reviewer's A formulation of the simple theory of types is used as an
example} Another extensien consists in 1eplacing the single set of relations v; by a finite
or infinite number of sets, each of a finite number of v;:-1elations. For the system of Prin- ) ;
cipia mathematica, as modlﬁed to conform to the simple theory of types, an infinite set of !
sets of vis-relations is used. For Quine’s system of logiséic (4585) a set of one and another
set of two vji-relations are used; it is in this case necessary also to use pedigrees; and one of
the v;- Ieiamons is not positional (but it does have the essential property of being preserved
" under substitution of letters, and all the main theorems remain true)
The reader's ﬁrst timpression of Newmnn s paper may be that the machinery mj;roduced
Y I com “The valug of the paper is in fact difficult i
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u‘_‘bre iﬂewman s methoas Justlfy the weight of mach er'y The reviewer “Would, however,

venture a predzctlon on one pomt namely that the Kind of analysis of formula.s which is
involved in the use of defining sets of equations will for many purposes prove 2 more fruitful
approach to “Semiotik’ than the analysis of formulas ag consisting of “‘atoms” combmed by f

“‘concatenation’’ (as used by Targki 28516, Quine 1116(3), Hermes, Schriter).
AloNzo CHURCH : ¢

NewsoN Goopwan  On the simplicity of ideas. The journal of symbalic logic, vol 8
{1943), pp. 107-121 A : . ;
In this paper Dr Goodman seeks to establish techniques for measuring the complexity of ]
any non-logical set of primitive ideas. The problem is complicated by the fact that the
number of distinet primitives in any such set can be reduced by standard procedures to one. 2
Merely counting primitives will aceordingly not detérmine the complexity of the base if ¢
every decrease in complexity, and hence every gain in economy, is to be recognized as sig:-
nificant. The eomplexity of each primitive itself must be taken into aceount
" This may be done as follows. Let the logical product of a class 4 and any cardipal num- )
ber be called a sardinal subclass of A’ and let the number of A’ non-null cardinal subelasses !
be celled the numerical variegation of A The complexity of 4 is merely itz numerical
variegation when A is either a class of individuals (identified with their unit classes) or a




