CS 235: Introduction to Databases
Svetlozar Nestorov

Lecture Notes #5

Outline
- Functional dependencies (FD)
- Properties of FD
- Inferring FD
- Normalization

Functional Dependencies
- $X \rightarrow A$ – assertion about a relation R that whenever two tuples agree on all the attributes of X, then they must also agree on attribute A.
- Important as a constraint on the data that may appear within a relation.
- Schema-level control of data.
- Mathematical tool for explaining the process of "normalization" – vital for redesigning database schemas when original design has certain flaws.

FD Conventions
- X, etc., represent sets of attributes; A etc., represent single attributes.
- No set formers ({{|}}) in FD’s, e.g., ABC instead of $\{A, B, C\}$.

Example

<table>
<thead>
<tr>
<th>Drinks(name, addr, beersLiked, manf, favoriteBeer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
</tr>
<tr>
<td>Mike</td>
</tr>
<tr>
<td>Mike</td>
</tr>
<tr>
<td>Anna</td>
</tr>
</tbody>
</table>

- Reasonable FD's to assert:
 1. ...
 2. ...
 3. ...
- Note: FD’s can give more detail than just assertion of a key.

Properties of FD’s
- Key (in general) functionally determines all attributes. In our example:
 - $name \text{ beersLiked} \rightarrow addr \text{ favoriteBeer} \text{ beerManf}$
- Shorthand: combine FD’s with common left side by concatenating their right sides.
- When FD’s are not of the form Key \rightarrow other attribute(s), then there is typically an attempt to “cram” too much into one relation.
Properties of FD’s

- Sometimes, several attributes jointly determine another attribute, although neither does by itself.
- Example:
 \(\text{beer bar} \rightarrow \text{price} \)

Formal Notion of Key

- \(K \) is a key for relation \(R \) if:
 1. \(K \rightarrow \text{all attributes of } R \).
 2. For no proper subset of \(K \) is (1) true.
- If \(K \) at least satisfies (1), then \(K \) is a superkey.

Example

- \(\text{Drinkers(name, addr, beersLiked, manf, favoriteBeer)} \)
- \(\{\text{name, beersLiked}\} \) FD’s all attributes, as seen.
- \(\text{name} \rightarrow \text{beersLiked} \) is false, so \(\text{name} \) not a superkey.
- \(\text{beersLiked} \rightarrow \text{name} \) also false, so \(\text{beersLiked} \) not a superkey.
- Thus, \(\{\text{name, beersLiked}\} \) is a key.
- No other keys in this example.
 - Neither \(\text{name} \) nor \(\text{beersLiked} \) is on the right of any observed FD, so they must be part of any superkey.

Who Determines Keys/FD’s?

- We could define a relation schema by simply giving a single key \(K \).
 - Then the only FD’s asserted are that \(K \rightarrow A \) for every attribute \(A \).
 - No surprise: \(K \) is then the only key for those FD’s, according to the formal definition of “key.”
- Or, we could assert some FD’s and deduce one or more keys by the formal definition.
 - E/R diagram implies FD’s by key declarations and many-one relationship declarations.
- Rule of thumb: FD’s either come from keyness, many-1 relationship, or from physics.
 - E.g., “no two courses can meet in the same room at the same time” yields \(\text{room time} \rightarrow \text{course} \).

Inferring FD’s

- When we talk about improving relational designs, we often need to ask “does this FD hold in this relation?”
- Given FD’s \(X_1 \rightarrow A_1, X_2 \rightarrow A_2, \ldots, X_n \rightarrow A_n \), does FD \(Y \rightarrow B \) necessarily hold in the same relation?
- Start by assuming two tuples agree in \(Y \). Use given FD’s to infer other attributes on which they must agree. If \(B \) is among them, then yes, else no.

Closure of Attributes

- Given a relation \(R \) with attributes \(X \) and a subset of the attributes \(Y \).
- Find all \(A \)’s such that \(Y \rightarrow A \).
- \(Y^+ = \text{closure of } Y = \text{set of attributes functionally determined by } Y \) (all the A’s)
Closure Algorithm

• Basis: \(Y^+ := Y \).
• Induction: If \(X \subseteq Y^+ \), and \(X \rightarrow A \) is a given FD, then add \(A \) to \(Y^+ \).

\[X \rightarrow A \]

\[\text{new } Y^+ \]

• End when \(Y^+ \) cannot be changed.

Example

• Relation \(R(A,B,C,D) \).
• FD’s: \(A \rightarrow B \), \(BC \rightarrow D \).
• \(A^+ = AB \).
• \(C^+ = C \).
• \((AC)^+ = ABCD \).

Given Versus Implied FD’s

• Typically, we state a few FD’s that are known to hold for a relation \(R \).
• Other FD’s may follow logically from the given FD’s; these are implied FD’s.
• We are free to choose any basis for the FD’s of \(R \) – a set of FD’s that imply all the FD’s that hold for \(R \).

Finding All Implied FD’s

• Motivation: Suppose we have a relation \(ABCD \) with some FD’s \(F \). If we decide to decompose \(ABCD \) into \(ABC \) and \(AD \), what are the FD’s for \(ABC \), \(AD \)?
• Example: \(F = AB \rightarrow C \), \(C \rightarrow D \), \(D \rightarrow A \). It looks like just \(AB \rightarrow C \) holds in \(ABC \), but in fact \(C \rightarrow A \) follows from \(F \) and applies to relation \(ABC \).
• Problem is exponential in worst case.

Algorithm

• For each set of attributes \(X \) compute \(X^+ \).
• Add \(X \rightarrow A \) for each \(A \) in \(X^+ \).
• Ignore or drop some “obvious” dependencies that follow from others:
 • 1. Trivial FD’s: right side is a subset of left side.
 • Consequence: no point in computing \(\emptyset^+ \) or closure of full set of attributes.
 • 2. Drop \(XY \rightarrow A \) if \(X \rightarrow A \) holds.
 • Consequence: If \(X^+ \) is all attributes, then there is no point in computing closure of supersets of \(X \).
 • 3. Ignore FD’s whose right sides are not single attributes.
• Notice that after we project the discovered FD’s onto some relation, the FD’s eliminated by rules 1, 2, and 3 can be inferred in the projected relation.

Example

\[F = AB \rightarrow C \], \(C \rightarrow D \), \(D \rightarrow A \). What FD’s follow?
• \(A^+ = A \); \(B^+ = B \) (nothing).
• \(C^+ = ACD \) (add \(C \rightarrow A \)).
• \(D^+ = AD \) (nothing new).
• …
Normalization

• Improve the schema by decomposing relations and removing anomalies.
• Boyce-Codd Normal Form (BCNF): all FD’s follow from the fact key → everything.
• Formally, R is in BCNF if every nontrivial FD for R, say X → A, has X a superkey.
 – “Nontrivial” = right-side attribute not in left side.

BCNF properties

1. Guarantees no redundancy due to FD’s.
2. Guarantees no update anomalies = one occurrence of a fact is updated, not all.
3. Guarantees no deletion anomalies = valid fact is lost when tuple is deleted.

Example (1/2)

Drinkers(name, addr, beersLiked, manf, favoriteBeer)

• FD’s:
 1. name → addr
 2. name → favoriteBeer
 3. beersLiked → manf
• ???’s are redundant, since we can figure them out from the FD’s.
• Update anomalies: If Mike moves, we need to change addr in each of his tuples?
• Deletion anomalies: If nobody likes Bud, we lose track of Bud’s manufacturer.

Example (2/2)

Each of the given FD’s is a BCNF violation:
• Key = {name, beersLiked}
 – Each of the given FD’s has a left side a proper subset of the key.