Algorithms — CS-37000
Loop invariants
January 24, 2006

Instructor: Léaszlé Babai

Loop invariants are critical tools for the proof of correctness of algo-
rithms; they represent the “inductive step” in a proof by induction that
the configuartion of the variables satisfies certain conditions throughout the
algorithm.

To formalize this concept, we introduce some terminology.

Let x1,...,x,, denote the variables on which an algorithm operates;
let A; be the domain of z; (set of possible values of z;). A configuration
a = (ay,...,an) is an assignment of values to each variable (a; € A;). The
set of all conceivable configurations is C = A; X ... X A,,; we call C the
configuration space. A feasible configuration is a configuration which can
actually occur in the course of an execution of the algorithm. Note that in
general, not all configurations are feasible.

Example: the variables in Dijkstra’s algorithm are the priority queue L and
for each vertex i € V, the variables status(i), c(i), and p(i) (the current
status, cost, and parent of vertex i), a total of 3n + 1 variables where n is
the number of vertices. The domain of status(¢) is { white, grey, black }; the
domain of ¢(7) is R U{oo} (the nonnegative reals and infinity); the domain
of p(i) is V U {NIL}. The domain of L can be thought of as 2 (the set of
all subsets of V).

An example of an infeasible configuration that nevertheless belongs to
the configuration space is a configuration where some vertex ¢ belongs to
the queue while status(i) =black.

A predicate over C is a function P : C — {0, 1} where 0 indicates “FALSE”
and 1 indicates “TRUE.” A transformation of C is a function S : C — C.

If P is a predicate and a € C a configuration then instead of writing
P(a) = 1, we just write “P(a),” meaning “the statement P(a) is TRUE”;
i.e., the configuration a satisfies the predicate P. For P(a) = 0 we may
write “—P(a),” meaning the negation of P(a) holds, i.e., a does not satisfy
P. In other words, P is false on a.

The effect of a sequence S of instructions in the code is a change of the
values of the variables and therefore S can be thought of as a transformation

S :C—C.

We are now ready to define the concept of loop-invariants.



Definition. Let P and @ be predicates over the configuration space and
let S be a sequence of instructions, viewed as a transformation of the con-
figuration space. Consider the loop

while P do S.

We call @ a loop-invariant for this loop if for all configurations « it is true
that

(Va € C)( if P(a) & Q(a) then Q(S(a))).

In other words, whenever a configuration a € C satisfies the loop condition
P and the predicate @, the new configuration S(a) obtained by executing
the sequence S of instructions again satisfies ().

Most important here is the quantifier (Va € C). The inference “if
P(a) & Q(a) then Q(S(a))” must be valid even if a is not a feasible con-
figuration. The power of loop-invariants comes from this feature; no hidden
assumptions are permitted.

The situation has some similarity with chess puzzles: when showing
that a certain configuration leads to checkmate in two moves, you do not
investigate whether or not the given configuration could arise in an actual
game.

PRACTICE QUESTIONS

Dijkstra’s algorithm consists of iterations of a single “while” loop. Let
s denote the source vertex. We say that a path s — j; — ... — ji “passes
through black vertices only” if the status of s, j1,..., jx_1 is black. The end
of the path, ji, may or may not be black.

Consider the following three statements:

Qo : if vertex i is in the queue then status(i) = grey.
Q1: (Vi,j € V)(ifiis black and j is not black then ¢(i) < ¢(j)).

Q2 : (Vi € V)(c(i) is the minimum cost among all s — ... — i paths
that pass through black vertices only).

1. (a) Prove that Qo is a loop-invariant.
(b) Prove that Qo&@1 is a loop-invariant.
(c) Prove that Qo&Q1&Q)2 is a loop-invariant.

2. Use these loop-invariants to prove the correctness of Dijkstra’s algo-
rithm. (Remark: for this we would really just need Q2; but to prove
that Q2 holds throughout the execution of the algorithm, we need to
rely on @1, and to prove that )1 always holds, we need Qg. This
results in the nested sequence of invariants above, a typical situation
in proofs of correctness.)

3. (a) Prove that @, alone is not a loop-invariant.



(b) Prove that Qp&Q2 is not a loop-invariant.

Ezxplanation. You need to construct a weighted directed graph
with nonnegative weights, a source, and an assignment of all the
variables (parent links, status colors, current cost values, set of
vertices in the queue) such that Qo&Q2 holds for your configu-
ration and the while condition holds (the queue is not empty)
but Q2 will no longer hold after executing Dijkstra’s while loop.
Your graph should have very few vertices (4 vertices suffice).

4. For each statement, decide whether or not it is a loop-invariant for
BFS: (a) “Vertex #2 is black.” (b) “Vertex #2 is white.” (c¢) “Vertex
#2 cannot change from black to white.” Reason your answers!



