
Binary Search to find item in sorted array
January 5, 2006

QUESTION: Suppose we are given a sorted list A[1..n] (as an array), of n
real numbers: A[1] ≤ A[2] ≤ . . . ≤ A[n]. Given a real number x, decide
whether x is in the array, using binary search: compare with the middle,
eliminate half the elements, etc. Write a short and elegant pseudocode for
this algorithm. State the exact number of comparisons between reals
your algorithm will make in the worst case. Hint: Solve the problem for all
subarrays A[a..b].

REMARK on cost. In the model described, comparison of reals is the only
cost item. Arithmetic with integers as well as bookkeeping (maintaining
pointers, copying integers) comes for free. We think of the comparisons of
real data as being much more expensive than manipulation of addresses in
the array. This simplification can be justified by practical considerations;
comparison of data may require a physical experiment (such as scratching
two precious stones to see which is harder or letting two teams play) or
comparison of long strings. But such practical considerations are secondary
to the theoretical significance of this simplification: (a) the model is now
mathematically very simple; (b) once we minimized this critical cost element,
the number of bookkeeping and integer arithmetic operations will be within
a constant factor of this crucial quantity.

SOLUTION. We describe two solutions. Study both solutions.

First solution. First we give an explicit algorithm with no recursive calls to
itself.

The procedure below will produce one of the following answers: “list
empty,” “not found,” “found.” In the last case it will also return an address
i such that x = A[i].

BinarySearch(A, a, b, x)

INPUT: a, b integers, A[a..b] array of real numbers, x real number.

00 if b < a then return NIL, exit (list empty)
01 ` := a, u := b (initializing lower and upper limits of current range)
02 while ` < u

1



03 p := b(` + u)/2c (pivot)
04 if x ≤ A[p] then u := p
05 else ` := p + 1
06 end(while)
07 if x = A[`] then return `, exit (item found)
08 return NIL, exit (item not found)

Comments.

1. After the execution of line 01, the following statement holds:

If x is on the list A[a..b] then A[`] ≤ x ≤ A[u].

This statement is a loop invariant, i. e., if it holds before the algorithm
enters a cycle of the while loop then it also holds after the execution
of the cycle.

(Why is this true? Consider carefully how lines 03, 04, 05 affect the
validity of this statement. What happens if A[p] < x < A[p + 1]?)

2. The algorithm keeps halving the length u−` of the current range [`, u],
rounding down if u − ` is odd. So eventually we arrive at the point
where u = `. At that point we know by Comment 1 that either x = A[`]
or x is not on the list A[a..b].

3. Note that Line 02 (comparison of two addresses) does not contribute
to our count of comparisons: it does not relate to our data but rather
their addresses, so it is essentially a bookkeeping operation.

The correctness of the algorithm follows from Comments 1 and 2. (Verify
this statement!)

To calculate the cost, i. e., the number of comparisons, we observe that
most of the comparisons occur on line 04, so we need to count how many
times line 04 is executed, which is the same as the number of executions of
the while loop.

2



Claim. If b ≥ a then the while loop is executed at most dlog(b−a+1)e times
(base 2 logarithm). This bound is tight (it is equal to the actual number of
executions of the while loop in the worst case).

Proof. Let m = u − ` and let mi denote the value of m after the i-th
execution of the while loop. Clearly, m0 = b − a and mi ≤ bmi−1/2c. By
induction on i we obtain that (∀i)(mi = bm0/2

ic). (Work out the inductive
proof!)

Suppose the while loop is executed t times; then t is the smallest integer
such that mt = 0. Therefore t is not greater than the smallest integer k
satisfying bm0/2

kc = 0, i. e., m0/2
k < 1, i. e., m0 < 2k, i. e., m0 + 1 ≤ 2k,

i. e., log(m0 + 1) ≤ k. Since k is the smallest such integer, we conclude that

k = dlog(m0 + 1)e.

It follows that k ≤ t, which proves the Claim. To see that this bound is
tight, observe what happens if x ≤ A[a]. Show that in this case (∀i)(mi =
bmi−1/2c). Therefore in this case t = k. Note that this is one of those very
rare cases when we can describe a “worst case” input.

To count the total number of comparisons, we need to add 1 to the above
tally for line 07. So the total cost of the algorithm is

dlog(b− a + 1)e+ 1.

Second solution. We state the same algorithm as a recursive algorithm, i. e.,
an algorithm which makes calls to itself on smaller instances.

RecursiveBinarySearch(A, a, b, x)

INPUT: a, b integers, A[a..b] array of real numbers, x real number.

20 if b < a then return NIL, exit (list empty)
21 RBS(A, a, b, x)

The recursive part of the algorithm is the procedure RBS to be described
next.

RBS(A, a, b, x)

INPUT: as above; we assume b ≥ a. (The validity of this assumption is
guaranteed since we are past line 20.)

3



23 if b = a then
24 if x = A[a] then return a, exit (item found)
25 else (now b− a ≥ 1)
26 p := b(a + b)/2c (pivot)
27 if x ≤ A[p] then b := p
28 else a := p + 1
29 RBS(A, a, b, x)

Comment. A careful study of this algorithm shows that it does essentially
the same as the one in the first solution. But the natural analysis is different;
it requires the solution of a recurrence for the cost function.

Analysis. Let C(m) denote the number of comparisons required by the RBS
algorithm in the worst case, where m = b − a ≥ 0. Note that m + 1 is the
number of items in the array; we use the parameter m for convenience.

We observe that C(0) = 1 (line 24) and for m ≥ 1,

C(m) = 1 + C(bm/2c).

Indeed, the cost C(m) consists of the cost of one comparison (line 27) plus
the cost C(bm/2c) of solving the same problem on a half-size instance (line
29).

Now, by induction on i, we obtain that for all i,

C(m) = i + C(bm/2ic).

(Work out the induction!)
Let k be the smallest integer such that m/2k < 1. As in the first solution,

this means that k = dlog(m + 1)e.
On the other hand, now k is the number of recursive calls (line 29).

Therefore the cost of the algorithm is

C(m) = k + C(bm/2kc) = k + C(0) = k + 1 = dlog(b− a + 1)e+ 1.

This agrees with the cost of the algorithm given in the first solution.

4


