Algorithms — CS-37000 Homework 4 — January 12, 2006

Instructor: Laszlé Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA’s problem sessions.

READING KT, 2.5 (Priority Queues), Karacuba—Ofman multiplication
handout

REVIEW from Discrete Math: Graphs and Digraphs, Asymptotic nota-
tion. Review all previous handouts and readings.

HOMEWORK. Please print your name on each sheet. Put every solu-
tion on a separate sheet. Please try to make your solutions easily readable.

This homework is due on Tuesday, January 17 at the beginning of
the class except problem 4.6 which is due Thursday, January 19.

Unless expressly stated otherwise, all algorithms must be described in
pseudocode. IMPORTANT: Define and explain your variables and
put comments on the lines of your pseudocode. (Otherwise your code will
be unintelligible. You lose credit if understanding your solution requires
unreasonable amount of work.)

All problems below have VERY SIMPLE solutions (just a few lines of pseu-
docode). ELEGANCE COUNTS!

For each problem below, state your answer in the form of an elegant pseu-
docode. Add definitions of your variables and brief comments explaining
what is happening. No explanation of the correctness and the cost of your
algorithms is required (as long as they are indeed correct and run in linear
time).

4.1 (4 points) Implement a complete binary tree with n nodes as an array
A[l,...,n]. For each address i = 1,...,n you need to define how to
compute parent(z), leftchild(7), rightchild () as very simple arithmetic
operations (or “NIL” if the corresponding child does not exist). Hint.
Number the nodes of a complete binary tree row-wise starting at the
root; examine how the number of a node is related to its children and
parent.

4.2 (8 points) (k-way merging.) Give an O(nlogk)-time algorithm to
merge k sorted lists into a single sorted list, where n is the total num-
ber of elements in all the input lists. Hint. Use a heap for k-way
merging.

4.3 (343 points) (a) Write simple pseudocode for DECREASE KEY (H, z,)
where z is a node in the heap H and 7 is a real number (the new key).
You need to replace key(z) by r if r is smaller. (b) Do the same for
INCREASE_KEY(H,z,r). You need to replace key(x) by r if r is
greater.

4.4

4.5

4.6

(6 points) A recursive algorithm reduces the the computation on an
input of size n to the computation on 5 inputs of size n/3 each. Calcu-
late the complexity of the algorithm (complexity = cost as a function
of n). Ignore the cost of the reduction (the cost of computing the 5
smaller inputs out of the one larger input). You may assume that n is
a power of 3. Inputs of size 1 require 1 unit of time.

(8 points) We are given an array of real numbers z[1],...,z[n]. The
sum of the interval [, j] is the quantity S[i,j] := > 7_, «[k]. Find the
maximum interval sum Spax. Find this value in linear time (i.e., the

number of operations should be O(n)).

(The solution should be a very simple pseudocode, no more than a few
lines. Elegance counts. Hint: dynamic programming.)

Note: you are not required to output the interval with the maximum
sum, just the value of the maximum sum. Observe the following con-
vention:

Convention. If j < i, we say that the interval [i, j] is empty; the sum
of the empty interval is zero. Empty intervals are admitted in the
problem. Therefore Spax > 0 even if all the x[i] are negative.

(Due Thursday, January 19) CAR RACE PROBLEM. The solution
should be short, elegant, and convincing.

Let R be a subset of the (n + 1)? points in the plane with integer
coordinates between 0 and n. We call R the “race track.” One of the
points of R is designated as the start (S), another as the goal (G).

The points are represented as vectors (i, j). Cars are particles sitting
on a point at any time. In one unit of time, a car can move from
a point of R to another point of R, say from (i1, 1) to (i2,j2). The
speed vector of the car during this time unit is defined as the vector
(i2 — i1, j2 — j1).

The acceleration/deceleration of the car is limited by the following
constraint: from any one time unit to the next one, each coordinate
of the speed vector can change by at most one.

For instance, if during time unit 6 the car was moving from point
(10,13) to point (16, 12) then its speed vector was (6, —1) during this
move; during the next time unit, the following are its possible speed
vectors and corresponding destinations:

speed during destination at the end of
time unit 7 time unit 7

(7,0) (23,12)

(7,-1) (23,11)

(7,-2) (23,10)

(6,0) (22,12)

(6,—1) (22,11)

Of course only those locations are legal which belong to R (the car
cannot leave the race track).

During time unit 0, the car rests at Start with speed (0,0). The
objective is to decide whether or not the Goal is reachable at all and
if so, to reach it using the minimum number of time units.

(a)

(15 points) Solve this problem in O(|R| - n?) time. Describe your
solution in clear English statements. Pseudocode not required.
Algorithms discussed and analysed in class can be used as subrou-
tines. Prove that your algorithm runs within the time claimed.
Hint. Use BFS. The difficulty is in constructing the right graph
to which to apply BFS. Do not overlook the fact that an optimal
route of the car may visit the same location several times (at dif-
ferent speeds). (Construct an example where the optimal route
visits the same point 100 times. Do not hand in the answer to
this parenthetical, though enlightening, question.)

(10 points) Solve the problem in O(|R| - n) time and space. (Note
that you are not permitted to use an array with more than O(|R|-
n) cells because of the space constraint.) (Hint: it is likely that
you need only a minor modification of the algorithm you gave for
(a) together with a more clever analysis.)

