Algorithms — CS-37000 Homework 3 — January 10, 2006

Instructor: Laszlé Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA’s office hours.
READING KT, material about BFS. “Knapsack” handout.

REVIEW from Discrete Math: Graphs and Digraphs, Asymptotic nota-
tion. Review all previous handouts and readings.

HOMEWORK. Please print your name on each sheet. Put every solu-
tion on a separate sheet. Please try to make your solutions easily readable.

This homework is due on Tuesday, January 17 at the beginning of
the class.

In the problems below, the digraph G is given by an array of adjacency
lists (“adjacency list representation” for short). We assume that there are
no multiple items on these lists. An algorithm runs in linear time if its
cost is big-Oh of the length of the input, so it is O(n + m) under our tacit
assumption. Unit cost is associated with the following operations: looking
up and copying an integer between 1 and n, looking up an entry at a given
location in an array, moving to the next item in a linked list, and similar
basic bookkeeping operations.

Unless expressly stated otherwise, all algorithms must be described in
pseudocode. IMPORTANT: Define and explain your variables and
put comments on the lines of your pseudocode. (Otherwise your code will
be unintelligible. You lose credit if understanding your solution requires
unreasonable amount of work.)

All problems below have VERY SIMPLE solutions (just a few lines of pseu-
docode). ELEGANCE COUNTS!

For each problem below, state your answer in the form of an elegant pseu-
docode. Add definitions of your variables and brief comments explaining
what is happening. No explanation of the correctness and the cost of your
algorithms is required (as long as they are indeed correct and run in linear
time).

3.1 (0 points, do not hand in) Find the connected components of an undi-
rected graph. Write a pseudocode for the algorithm outlined in class.

3.2 (5 points) Recall that a digraph is strongly connected if each vertex
is accessible from every vertex. Given a digraph (in adjacency list
representation), decide in linear time whether or not it is strongly
connected. (Hint: a simple combination of previously studied algo-
rithms.)

3.3 (12 points) (All-ones square problem.) Given an n x n array A of zeros
and ones, find the maximum size of a contiguous square of all ones.
(You do not need to locate such a largest all-ones square, just deter-
mine its size.) Solve this problem in linear time. “Linear time” means



the number of steps must be O(size of the input). In the present prob-
lem, the size of the input is O(n?). Manipulating integers between 0
and n counts as one step; such manipulation includes copying, incre-
menting, addition and subtraction, looking up an entry in an n X n
array.

Describe your solution in pseudocode. Make sure you give a clear
definition of the variables you introduce; this accounts for half
the credit. The solution should be wery simple, no more than a few
lines. Elegance counts. Hint: dynamic programming. Example:

— = = = =
= =)
_ = = = O
O = = =
— = = == O
— O = = =

In this example, the answer is 3. There are three contiguous 3 x 3
square subarrays of all-ones. One is indicated below by underlines,
another is shown in a the third one is indicated by Italics.

R N N~ O

Ol N N~ =
— O N N N

i et L i i
= == O —~ O
=~ = —~| O

3.4 (14 points) Consider the Knapsack problem described in the hand-
out. The input parameters in that problem are positive reals called
weights and values; and a “weight limit” W is given. It is shown in the
handout how one can solve this problem in O(nW) steps (arithmetic,
comparison, bookkeeping) if all weights (including W) are integers.

Assume now that all values are integers (but the weights are real).
Let V denote the sum of the values. Solve the knapsack problem
in O(nV) steps under this assumption. Your solution should be a
simple pseudocode. Make sure you give a clear definition of your
variables; this accounts for half the credit.



