
Algorithms – CS-37000 Homework 2 – January 5, 2006
Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA’s office hours.

READING KT, Chapters 4.1, 4.2. (KT = Kleinberg - Tardos text), Binary
Search handout. Study PSEUDOCODE conventions in the handout and in
Homework 1.

REVIEW from Discrete Math: Graphs and Digraphs, Asymptotic nota-
tion.

HOMEWORK. Please print your name on each sheet. Exceptionally,
you do not need to put every solution on a separate sheet; each solution
should occupy a few lines only. Please try to make your solutions easily
readable.

This homework is due on Tuesday, January 10 at the beginning of
the class.

In the problems below, the digraph G is either given by an array of adjacency
lists (“adjacency list representation” for short) or by the list of vertices and
the list of edges (“edge list representation”). If there are no multiple items
on these lists (a tacit assumption we always make unless the opposite is
expressly stated), then the length of each representation is Θ(n + m) where
n is the number of vertices and m is the number of edges. An algorithm
runs in linear time if its cost is big-Oh of the length of the input, so it
is O(n + m) under our tacit assumption. Unit cost is associated with the
following operations: looking up and copying an integer between 1 and n,
looking up an entry at a given location in an array, moving to the next item
in a linked list, and similar basic bookkeeping operations.

Unless expressly stated otherwise, all algorithms must be described in
pseudocode. IMPORTANT: Define and explain your variables and
put comments on the lines of your pseudocode. (Otherwise your code will
be unintelligible. You lose credit if understanding your solution requires
unreasonable amount of work.)

All problems below have VERY SIMPLE solutions (just a few lines of pseu-
docode). ELEGANCE COUNTS! Hint: The typical cycle structure of a
linear time graph algorithm based on an adjacency list representation is
this:

1 for i = 1 to n do (visit every vertex)
2 for j ∈ adj[i] do (visit every edge out of vertex i)
3 (instructions)
4 end(for)
5 end(for)
6 return (value)

1



Things might get slightly more complicated, but often enough, this is
the basic structure. If line 3 takes constant time then the overall time is
linear.

For each problem below, state your answer in the form of an elegant pseu-
docode. Add definitions of your variables and brief comments explaining
what is happening. No explanation of the correctness and the cost of your
algorithms is required (as long as they are indeed correct and run in linear
time).

2.1 (6 points) Given an edge-list representation of a digraph with possibly
repeated edges, turn it into a multiplicity-free edge-list representation
(no repeated edges). Do this in linear time.

2.2 (2 points) Given an edge-list representation of a digraph, turn it into
an adjacency list representation in linear time.

2.3 (2 points) Given an adjacency list representation of a digraph, turn it
into an edge-list representation in linear time.

2.4 (6 points) The reverse of the digraph G has the same vertex set but
all edges are reversed. Given an adjacency list representation of a
digraph, construct an adjacency list representation of its reverse in
linear time.

2.5 (6 points) An adjacency list is monotone if the neighbors are listed in
increasing order. Given an adjacency list representation of a digraph,
turn it into a monotone adjacency list representation in linear time.

2.6 (6 points) A digraph is undirected if it is its own reverse. Given an ad-
jacency list representation of a digraph, decide in linear time whether
or not it is undirected.

2.7 (6 points) An edge in a digraph is undirected if its reverse is also an
edge. Given a digraph by an edge-list, count its undirected edges in
linear time.

2.8 (6 points) Given a digraph by an edge-list, sort the vertices by their
out-degrees in linear time, smallest degree first. (You should return
an array which contains a permutation of the numbers 1 to n. Ties
are resolved arbitrarily.)

2


