Algorithms — CS-37000  Homework 1 — January 3, 2006

Instructor: Laszlé Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA’s office hours.
READING KT, Chapters 4.1, 4.2. (KT = Kleinberg - Tardos text)

HOMEWORK. Please print your name on each sheet. Put every solu-
tion on a separate sheet (so graders can split the job). Please try to make
your solutions readable.

This homework is due on Tuesday, January 10 at the beginning of
the class.

In the problems below, the graph G is given by an array of adjacency lists:
the vertices are {1,...,n}; the entry A[é] in the array A[l,...,n]is a link to
the head of a linked list adj[i], the “adjacency list of vertex ¢,” which lists
the neighbors of 7. Note that to decide whether or not 7 and j are neighbors
may require deg(7) steps based on this input.

In the problems below, “graph” means undirected graph.

Unless expressly stated otherwise, all algorithms must be described in pseu-
docode. Define and explain your variables! (Otherwise your code will
be unintelligible. You lose credit if understanding your solution requires
unreasonable amount of work.)

1.1 Two edges are said to be independent if they do not share a vertex.
A matching in a graph is a set of independent edges. (In other words,
a matching in G is a spanning subgraph of G in which every vertex
has degree < 1.) A mazimum matching is a matching of maximum
size (maximum number of independent edges). A greedy approach to
finding a maximum matching is described by the following pseudocode:

Greedy_Matching(G)

The variable M maintains a growing list of independent edges.

0 Initialize: M := empty list

1 for e € E(G) do

2 if e is independent of all edges in M then
3 add e to M

4 end (if)

5 end(for)

6 return M

(al) (6 points) Prove: this algorithm does not always return a maxi-
mum matching. Show that for every k there exists a graph with
maximum matching size 2k where the algorithm returns a match-
ing of size k only. (a2) (3 additional points) Make your graphs
connected.



1.2

(b) (6 points) Prove that the algorithm always returns a matching of
size at least half of the maximum.

(c) (3 points) Estimate the number of steps taken by the algorithm in
terms of the number of vertices (n) and the number of edges (m).
Express your answer using the big-oh notation (ignore a constant
factor). Your expression should be very simple. If we define n+m
to be the input size, is this a “polynomial time algorithm,” i.e.,
is the number of steps polynomially bounded as a function of the
input size?

Note that the result of the greedy algorithm depends not only on the
graph but on the order in which its edges are accessed.

A greedy approach to coloring the vertices of a graph is described by
the following pseudocode.

Greedy_Coloring(G)

The set of verticesis {1,...,n}. The array f[1...n| contains the colors
assigned to each vertex.

Initialize:

1 fori=1tondo

2 f[i] :=0  (: no color assigned yet to vertex i :)
3 end(for)

Main loop:

4 for i =1ton do

5 let f[i] be the smallest positive integer
which is not in the set {f(j) : j € adj[i]}

6 end(for)

7 return f

(a) (2 points) Prove that the greedy coloring algorithm uses at most
1 + deg,, . colors where deg, .. is the maximum degree in G.

(b) (6 points) Prove that this algorithm can fail dismally: for every
even number n, construct a bipartite graph G, with n vertices
such that the greedy coloring algorithm uses n/2 colors (instead
of the 2 colors that would suffice).

(¢) (6 points) The timing analysis of this algorithm depends on the
implementation of line 5. Implement line 5 (in a more detailed
pseudocode) in such a way that the execution of line 5 should
take no more than O(deg[i]) steps. (One step is to follow a link
in a linked list or to look up an entry in an array or to write an
entry in an array.)

(d) (2 points) Assuming now that the execution of line 5 takes O(deg|])
steps, show that the overall cost of the algorithm is linear, i.e.,
O(n+m) (where n is the number of vertices, m is the number of
edges; and therefore n + m is the size of the input).



1.3

(a)

(5 points) Modify the pseudocode of Greedy_Coloring to yield an
algorithm that colors every planar graph with at most 6 colors.
Do not make recursive calls to your algorithm. Keep the algo-
rithm essentially intact but add a preprocessing phase in which
you relabel the vertices. You may use high-level commands like
line 5 in the previous exercise.

(5 points) Implement the preprocessing defined in (a) to run in
linear time (O(n + m) steps). Describe your implementation in
pseudocode. (“Implementation” of a high-level command means,
as before, a more detailed pseudocode which gives enough detail
to permit unambiguous timing analysis, up to a constant factor.)



