
CMSC 23000
Winter 2006

Operating Systems Project 1
January 6

Unix shell
Due: January 20

1 Introduction

Despite recent bad press, an unnamed agency of the government is eager to continue the fight against
enemies of the state. To this aim, they have contracted with you to write a new Unix shell called
the “Freedom shell” (or fsh). This shell will allow responsible unnamed agencies to monitor the
activities of suspected terrorists, environmental activists, and other “bad actors.”

Your task is to write an implementation of the fsh using POSIX threads (pthreads). The fsh is
a simple Unix shell that allows a third party to remotely monitor shell commands. Your shell will
have to support the usual shell features of I/O redirection, pipes, and background processes. But it
also has to provide this clandestine monitoring feature.

2 Description

The input to the fsh is a sequence of commands, each provided on a separate line of input text typed
interactively at the keyboard: The fsh supports the following command syntax:

Command
::= Program (| Command)opt

| Program &opt

| exit

Program
::= Path Argsopt (< Path)opt (> Path)opt

where a Path has the following syntax:

Path
::= /opt Filename (/ Filename)∗

Filenames are non-empty sequences of letters, digits, or one of “.”, “-”, “+”, “=”, “@”, or “_.”

2.1 Signals

Finally, your shell needs to ignore a single signal, SIGINT. This signal is generated when a user
presses ctrl-C on the keyboard. When received, it should be passed to the currently running program,
but it should not cause your shell to terminate. It should also have no effect on background jobs.

2.2 Background jobs

When a program runs, it normally blocks you from performing any other operations until it has
completed. However, you can put a program into the background using the “&” operator. For
example:

progname args &

Detaches the program progname and runs it in the background. Control is immediately returned to
the command shell where additional commands can be executed. Background jobs should continue
to run even if you quit the shell before they have finished.

2.3 I/O redirection

In addition to the above commands, your shell must support I/O redirection. I/O redirection is
specified using the “<” and “>” operators at the end of a command line. For example, the command

progname args >file.out

directs the standard output of progname to the file file.out and

progname args <file.in

uses the contents of the file file.in as the standard input to program progname. Both input and
output redirection may be specified for a single command so your shell will have to check for both.

2.4 Pipes

Your shell also needs to support pipes. A pipe is nothing more than a way of hooking up the standard
output of one program to the standard input to another. A pipe is indicated using the “|” operator
as follows:

progname1 args | progname2 args

Pipes the output of program progname1 to the input of program progname2. For example:

fsh % ls | wc
5 5 28

fsh % foo < infile | bar > outfile

Note that attempting to redirect a programs output and also pipe it to another program is not sup-
ported. For example, the following produces an error message:

fsh % ls > outfile | wc
fsh: illegal command

2

2.5 The “Freedom” interface

To allow secret monitoring, the shell should listen for connections on a network port that is equal to
its process id (pid) + 10000. Remote users should then be able to watch the shell by simply using
the telnet command. For example, suppose that a user launches fsh and it has a process ID of 11538
(you can use ps to find the process ID). The the following command will connect to the fsh:

% telnet localhost 21538
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.
[Welcome to the fsh shell]

Once a user connects to the fsh, the user should see all commands and all output from those
commands displayed as long as the telnet connection stays open. Commands should be prefixed
with the string “[fsh]” and the output from a command progname should be prefixed with
“[progname].” For example, the above command sequence might produce the following trace:

[fsh] ls | wc
[ls]bar.h\nbaz.c\nfoo\nfoo.c\nfoo.out
[wc]\t7\t5\t28\n
[fsh]foo < infile | bar > outfile

Note that the newlines and tab characters that wc uses to format its output are escaped. Note that
the fsh should support multiple connections to the freedom interface.

3 The project

We recommend that you break the project into steps. You use your subversion repository to manage
your source; tag major milestones so that you can isolate the source of problems later on.

Chapter 3 of the text has a shell project; you may find its description helpful.

3.1 Step 0: Gforge account

The first step is to create a gforge account on cs230.cs.uchicago.edu. Please email your
account name to the TA (jriehl@cs.uchicago.edu). We will then create a project for you
and an initial subversion repository.

3.2 Step 1: Design

The first step is to design the architecture of your implementation. For this purpose, I recommend
thinking how you want to map the major components of the system onto Posix threads.

3.3 Step 2: Command interpreter

Your initial subversion repository includes a parser for the command language. This parser builds a
parse-tree representation of the input. You should implement an interpreter for this representation.
Start with basic command execution, then add I/O redirection, then background jobs, and finally

3

pipes. Once you have these features working, add support for ctl-C. Commit your changes at each
step of the way.

3.4 Step 3: Freedom interface

Once you have the basic shell working, add the monitoring mechanism.

3.5 Step 4: Commit final version

Make sure that you have committed your final version. Using Doxygen, generate the documentation
for your code. Make sure that it includes your name!. The documentation is due in class on Friday,
January 20th.

4 Grading

Your project will be graded on both correctness (70%) and programming style (30%). The docu-
mentation is evaluated as part of the style component of your grade.

4

