
CMSC 23000
Winter 2006

Operating Systems Homework 1
Due January 25

The Intel IA32 provides an atomic compare and swap instruction with the following semantics:

bool cmpxchg (int *word, int *key, int val)
{

if (*word == *key) {

*word = val;
return true;

}
else {

*key = *word;
return false;

}
}

Note: in the actual hardware instruction, the in-out parameter key is held in the %eax register.
In the questions below, you should use the cmpxchg function. Furthermore, you may assume the
existence of a function

thread_id_t get_tid();

and a constant NO_TID of type thread_id_t that is distinct from any thread’s ID.

1. Using the cmpxchg function, implement a spinlock. Your implementation should include
the following definitions:

typedef ... SpinLock_t;
void sl_init (SpinLock_t *);
void sl_lock (SpinLock_t *);
void sl_unlock (SpinLock_t *);

2. Using cmpxchg, implement a mutex lock that satisfies the following properties:

• mutual exclusion — no two threads can hold the lock at the same time.

• progress — if one or more threads is attempting to acquire the lock, then one of them
will do so.

• fairness — is a thread is waiting on the lock, then there is a bound on the number of
times that other threads are allowed to acquire the lock before it does so.

Justify that your implementation satisfies these properties. For this question, you may assume
the existence of a FIFO queue abstraction and the block and wakeup operations used in
the text.

3. For extra credit, change the implementation of the lock to support reentrancy. I.e., allow
nested locking by the same thread.


