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Aggregate Function

Definition: a function that performs computation on a set of values 
rather than on a single value

� Examples: COUNT, SUM, AVG, etc. 

� Suppose we would like to eliminate aggregate values below some threshold. Sounds simple 
enough?

� Table 1 – consider the relation

� SELECT      target1, target2, count(rest)
FROM         R
GROUP BY  target1, target2
HAVING     count(rest) >= T

� If T = 3, we get the tuple <a,e,3>.

� ICEBERG QUERY – The relation R and the number of unique target values are typically huge 
(the iceberg), and the answer is very small

� Picture 1 - demonstration



Why are Iceberg Queries a concern? The amount of targets can get very large and 
must be computed efficiently! 

“The time to execute iceberg queries dominates the cost of producing interesting 
association rules” – Park et al. ACM SIGMOD, May ‘95

� What are some good ideas for efficiency?

� Use compact, in memory data structures. A nice start. But how?

� Maintain array of counters in main memory, one counter for each unique target set -> answer 
query in single pass over data. Insufficient – R usually X times larger than available 
memory. 

� Sort R on disk, then do a pass over it aggregating and selecting targets above the threshold. 
Fine if you are willing to wait weeks (Gigabytes) or months (Terabytes).

� Unfair assumption – R is materialized. With the newest Wal-Mart data, R could easily be too 
large to be explicitly materialized. 

Example – finding word pairs in 100,000 web documents, avg word length 118 words. Original 
storage, 500 MB. 
R over which the iceberg query is to be executed has all pairs of words that occur in the same 
document. New storage, 40 GB.  Answer size: 1MB!



Key: Avoid sorting or hashing realized or unrealized R by keeping compact, 
in-memory structures that allow use to identify threshold targets. 

Solution: Extend sampling and multiple hash function algorithms to 
improve performance and reduce memory requirements.

� Why work with these new algorithms? Sounds like a lot of work

� Examples why executing Iceberg Queries with efficient care is 
important. 

� Example 1 – try the most current sorting technique. Large 
response time to query. Need to make algorithm that performs 
different amount of work depending on size of query’s output

� What if we change criteria for selecting item to be $10? 

� Key point to keep in mind throughouth the paper: traditional 
techniques lead to unacceptable turnaround times and disk 
space. Their new algorithms make large improvements.



Terminology for the Algorithms - Assumptions

Beginning with Relation R with <target,rest> pairs. 
Executing simple iceberg query with groups on the single target in R

� V – ordered list of targets in R such that V[r] is rth most frequent 
target in R (rth highest rank), n = |V|

� Freq(r) – the frequency of V[r] in R

� Area(r) – total number of tuples in R with r most frequent targets

� Typical Iceberg Query: select target values with frequency higher 
than threshold T

� rt = max{r|Freq(r)>=T}  gives: as an answer to the query
H = {V[1], V[2], … , V[rt]} ----- HEAVY TARGETS
L = the remaining light values



a priori flaws in their algorithms? 
You decide.
� All their algorithms compute set of potentially heavy targets F that 

contains as many members of H as possible. 

� F – H != { } -> false positive (light values reported as heavy). 

Solution: use procedure Count(F)…
Scan and explictly count frequency of targets in F. Only targets that 
occur T or more times are output in the final answer. 

� H – F ! = { } -> false negatives (heavy targets are missed). Very 
dangerous – post processing to “regain” false negative inefficient. 

Regain false negatives efficiently in high skew case – example: very 
small fraction of targets account for 80% of tuples in R, while other 
targets together count for the other 20%.



Simple Algorithms to compute F – building blocks for the 
more sophisticated algorithms

SCALED-SAMPLING 

� Take random sample of size s from R. 

� If count of each target in the sample, scaled by N/S, 
exceeds the specified threshold, target is part of the 
candidate set F. 

� PROS: Simple and efficient to run. ☺

� CONS: We obtain both false-positives and false-
negatives. Removing the shear amount of them is 
difficult. /



Simple Algorithms to compute F – building blocks for the more 
sophisticated algorithms

COARSE-COUNT (Probablistic Counting)

� Intuition: Use an array A[1..m] of m counters and a hash 
function h1 which maps target values from log2n bits to log2m
bits, m << n

� Intialize all m entries of A to zero. Perform a linear scan of R. 
� For each tuple in R with target v,  A[h1(v)]++  :  THE HASHING SCAN (HS)
� Compute bitmap array BITMAP1[1..m] by scanning through array A

� If bucket i is heavy (i.e. A[i] ≥ T) then set BITMAP1[i] 

Reclaim memory allocated to A.
Compute F by performing candidate-selection scan of R: 

- Scan R and for each targer v whose BITMAP1[h1(v)] = 1, add v to     
F. Remove false-positives by executing Count(F). 

Pros: NO FALSE NEGATIVES



HYBRID techniques – combine sampling and counting 
approaches for a better algorithm.

� Intuition – sample data to identify candidates for heavy 
targets, then use coarse-counting to remove false-negatives 
and false-positives. 

� PROS: reduce number of targets that fall into heavy buckets –
i.e. fewere light targets becoming false positives. 

� Cons: more difficult to implement. You must make prudent 
choices on which algorithm to spend your time on depending 
on your R.

� In other words, you need to know a lot about the composition 
of your data a priori.



DEFER-COUNT

Intuition: Find a way to get fewer heavy bucket and therefore get fewer 
false positives 

� First compute a small sample (size s << n ) of the data using the 
sampling techniques mentioned.

� Select the f , f < s, most frequent targets in the sample and add them 
to F. 

� Remove false positives by executing Count(F)

� CONS: splits up main memory b/t samples set and buckets for 
counting. 

It’s also hard to choose good values for s and f that are useful for a 
variety of data sets. Overhead is also high.



MULTI-LEVEL

Intuition: Do not explicitly maintain list of potentially heavy targets in MM. Use the 
sampling phase to identify potentially heavy buckets.

� Peform sampling scan of data. For each target v, increment    
A[h(v)] for the hash function h.

� After sampling s targets, consider each of the A buckets.
� If A[i]>T x s/n, mark the ith bucket to be potentially heavy. 
� For each ith bucket allocate m2 auxiliary buckets in MM

NOW reset all counters in A array to zero. Perform hashing scan of 
data. 

For each target v in the data, increment A[h(v)] if bucket 
corresponding to h(v) is not marked to be potentially heavy. If the 
bucket is marked, apply new hash function h2(v) and increment 
corresponding auxiliary bucket



MULTI-STAGE

Intuition: use available memory more efficiently. 

� Do the same pre-sampling phase as MULTI-LEVEL. (Identify heavy 
buckets)

� But allocate a common pool of auxiliary buckets B[1,2,…,m3].

� Perform hashing scan of the data:
� For each target v in the data, increment A[h(v)] if the bucket corresponding 

to h(v) is not market as potentially heavy.
� If bucket is marked, apply the second hash function h2 and increment 

B[h2(v)]. 

� Disadvantage: determining how to split memory across primary 
buckets and auxiliary buckets can only be determined empirically /



MULTIBUCKET algorithms

Optimize the HYBRID algorithms and alleviate flaws

� Flaws in HYBRID algorithms:
� Many false-positives if many light values fall into buckets with

� Problem 1: One or more heavy targets
� Problem 2: Many light values

Sampling helps problem 1, but heavy targets not identified by
Sampling could lead to several light values falling into heavy buckets.

HYBRID cannot avoid problem 2.

Solution: use multiple sets of primary and auxiliary buckets

PROS: reduces # of false positives significantly 

CONS: complicated to implement, complicated to describe



MULTIBUCKET ALGORITHMS

� Single Scan DEFER-COUNT with multiple hash 
functions (UNISCAN)

� Multiple Scan DEFER-COUNT with multiple hash 
functions (MULTISCAN)

� MULTISCAN with shared bitmaps (MULTISCAN-
SHARED)



Interesting and useful extension to the algorithms 
– a SUM query

� PopularItem Query

� Example 2



Rules of Thumb
� MULTI-LEVEL did not perform well in their experiments

� DEFER-COUNT works well when one expects the data to be very 
skewed (i.e. high skew 80/20 case: very few targets are heavy, but 
constitute most of the relation). Be sure to use a small f set

� MULTI-STAGE works well if data is not skewed, since it does not incur 
the overhead of looking up the values in f.

� If data distribution is flat, don’t use a sampling scan.

� If you want to get crazy and use MULTIBUCKET algorithms, take a look 
at their long technical report and take the plunge


