
Computing Iceberg Queries Efficiently -

A summary of the paper by Fang, et al.

Noah Clemons
Data Mining
University of Chicago

Aggregate Function

Definition: a function that performs computation on a set of values
rather than on a single value

� Examples: COUNT, SUM, AVG, etc.

� Suppose we would like to eliminate aggregate values below some threshold. Sounds simple
enough?

� Table 1 – consider the relation

� SELECT target1, target2, count(rest)
FROM R
GROUP BY target1, target2
HAVING count(rest) >= T

� If T = 3, we get the tuple <a,e,3>.

� ICEBERG QUERY – The relation R and the number of unique target values are typically huge
(the iceberg), and the answer is very small

� Picture 1 - demonstration

Why are Iceberg Queries a concern? The amount of targets can get very large and
must be computed efficiently!

“The time to execute iceberg queries dominates the cost of producing interesting
association rules” – Park et al. ACM SIGMOD, May ‘95

� What are some good ideas for efficiency?

� Use compact, in memory data structures. A nice start. But how?

� Maintain array of counters in main memory, one counter for each unique target set -> answer
query in single pass over data. Insufficient – R usually X times larger than available
memory.

� Sort R on disk, then do a pass over it aggregating and selecting targets above the threshold.
Fine if you are willing to wait weeks (Gigabytes) or months (Terabytes).

� Unfair assumption – R is materialized. With the newest Wal-Mart data, R could easily be too
large to be explicitly materialized.

Example – finding word pairs in 100,000 web documents, avg word length 118 words. Original
storage, 500 MB.
R over which the iceberg query is to be executed has all pairs of words that occur in the same
document. New storage, 40 GB. Answer size: 1MB!

Key: Avoid sorting or hashing realized or unrealized R by keeping compact,
in-memory structures that allow use to identify threshold targets.

Solution: Extend sampling and multiple hash function algorithms to
improve performance and reduce memory requirements.

� Why work with these new algorithms? Sounds like a lot of work

� Examples why executing Iceberg Queries with efficient care is
important.

� Example 1 – try the most current sorting technique. Large
response time to query. Need to make algorithm that performs
different amount of work depending on size of query’s output

� What if we change criteria for selecting item to be $10?

� Key point to keep in mind throughouth the paper: traditional
techniques lead to unacceptable turnaround times and disk
space. Their new algorithms make large improvements.

Terminology for the Algorithms - Assumptions

Beginning with Relation R with <target,rest> pairs.
Executing simple iceberg query with groups on the single target in R

� V – ordered list of targets in R such that V[r] is rth most frequent
target in R (rth highest rank), n = |V|

� Freq(r) – the frequency of V[r] in R

� Area(r) – total number of tuples in R with r most frequent targets

� Typical Iceberg Query: select target values with frequency higher
than threshold T

� rt = max{r|Freq(r)>=T} gives: as an answer to the query
H = {V[1], V[2], … , V[rt]} ----- HEAVY TARGETS
L = the remaining light values

a priori flaws in their algorithms?
You decide.
� All their algorithms compute set of potentially heavy targets F that

contains as many members of H as possible.

� F – H != { } -> false positive (light values reported as heavy).

Solution: use procedure Count(F)…
Scan and explictly count frequency of targets in F. Only targets that
occur T or more times are output in the final answer.

� H – F ! = { } -> false negatives (heavy targets are missed). Very
dangerous – post processing to “regain” false negative inefficient.

Regain false negatives efficiently in high skew case – example: very
small fraction of targets account for 80% of tuples in R, while other
targets together count for the other 20%.

Simple Algorithms to compute F – building blocks for the
more sophisticated algorithms

SCALED-SAMPLING

� Take random sample of size s from R.

� If count of each target in the sample, scaled by N/S,
exceeds the specified threshold, target is part of the
candidate set F.

� PROS: Simple and efficient to run. ☺

� CONS: We obtain both false-positives and false-
negatives. Removing the shear amount of them is
difficult. /

Simple Algorithms to compute F – building blocks for the more
sophisticated algorithms

COARSE-COUNT (Probablistic Counting)

� Intuition: Use an array A[1..m] of m counters and a hash
function h1 which maps target values from log2n bits to log2m
bits, m << n

� Intialize all m entries of A to zero. Perform a linear scan of R.
� For each tuple in R with target v, A[h1(v)]++ : THE HASHING SCAN (HS)
� Compute bitmap array BITMAP1[1..m] by scanning through array A

� If bucket i is heavy (i.e. A[i] ≥ T) then set BITMAP1[i]

Reclaim memory allocated to A.
Compute F by performing candidate-selection scan of R:

- Scan R and for each targer v whose BITMAP1[h1(v)] = 1, add v to
F. Remove false-positives by executing Count(F).

Pros: NO FALSE NEGATIVES

HYBRID techniques – combine sampling and counting
approaches for a better algorithm.

� Intuition – sample data to identify candidates for heavy
targets, then use coarse-counting to remove false-negatives
and false-positives.

� PROS: reduce number of targets that fall into heavy buckets –
i.e. fewere light targets becoming false positives.

� Cons: more difficult to implement. You must make prudent
choices on which algorithm to spend your time on depending
on your R.

� In other words, you need to know a lot about the composition
of your data a priori.

DEFER-COUNT

Intuition: Find a way to get fewer heavy bucket and therefore get fewer
false positives

� First compute a small sample (size s << n) of the data using the
sampling techniques mentioned.

� Select the f , f < s, most frequent targets in the sample and add them
to F.

� Remove false positives by executing Count(F)

� CONS: splits up main memory b/t samples set and buckets for
counting.

It’s also hard to choose good values for s and f that are useful for a
variety of data sets. Overhead is also high.

MULTI-LEVEL

Intuition: Do not explicitly maintain list of potentially heavy targets in MM. Use the
sampling phase to identify potentially heavy buckets.

� Peform sampling scan of data. For each target v, increment
A[h(v)] for the hash function h.

� After sampling s targets, consider each of the A buckets.
� If A[i]>T x s/n, mark the ith bucket to be potentially heavy.
� For each ith bucket allocate m2 auxiliary buckets in MM

NOW reset all counters in A array to zero. Perform hashing scan of
data.

For each target v in the data, increment A[h(v)] if bucket
corresponding to h(v) is not marked to be potentially heavy. If the
bucket is marked, apply new hash function h2(v) and increment
corresponding auxiliary bucket

MULTI-STAGE

Intuition: use available memory more efficiently.

� Do the same pre-sampling phase as MULTI-LEVEL. (Identify heavy
buckets)

� But allocate a common pool of auxiliary buckets B[1,2,…,m3].

� Perform hashing scan of the data:
� For each target v in the data, increment A[h(v)] if the bucket corresponding

to h(v) is not market as potentially heavy.
� If bucket is marked, apply the second hash function h2 and increment

B[h2(v)].

� Disadvantage: determining how to split memory across primary
buckets and auxiliary buckets can only be determined empirically /

MULTIBUCKET algorithms

Optimize the HYBRID algorithms and alleviate flaws

� Flaws in HYBRID algorithms:
� Many false-positives if many light values fall into buckets with

� Problem 1: One or more heavy targets
� Problem 2: Many light values

Sampling helps problem 1, but heavy targets not identified by
Sampling could lead to several light values falling into heavy buckets.

HYBRID cannot avoid problem 2.

Solution: use multiple sets of primary and auxiliary buckets

PROS: reduces # of false positives significantly

CONS: complicated to implement, complicated to describe

MULTIBUCKET ALGORITHMS

� Single Scan DEFER-COUNT with multiple hash
functions (UNISCAN)

� Multiple Scan DEFER-COUNT with multiple hash
functions (MULTISCAN)

� MULTISCAN with shared bitmaps (MULTISCAN-
SHARED)

Interesting and useful extension to the algorithms
– a SUM query

� PopularItem Query

� Example 2

Rules of Thumb
� MULTI-LEVEL did not perform well in their experiments

� DEFER-COUNT works well when one expects the data to be very
skewed (i.e. high skew 80/20 case: very few targets are heavy, but
constitute most of the relation). Be sure to use a small f set

� MULTI-STAGE works well if data is not skewed, since it does not incur
the overhead of looking up the values in f.

� If data distribution is flat, don’t use a sampling scan.

� If you want to get crazy and use MULTIBUCKET algorithms, take a look
at their long technical report and take the plunge

