
Searching for
Authority on the WWW

(Not just relevance or popularity...)
Ido Rosen
<ido@cs.uchicago.edu>

Sources of Information
on the WWW

• Textual content

• Images, sounds, multimedia content

• Hyperlink digraph (network structure)

• Pages are vertices, links are arcs

• Refinement: URLs are nodes

Nature of the WWW

• Local organization may be a priori.

• Global organization “utterly unplanned.”

• Billions of agents (users, spiders).

• Millions of publishers.

• Trillions of vertices, at least.

• Too big for simple search.

• Quality of search method defined by
utility of results.

• Utility requires human evaluation.

• Utility is closely correlated to relevance.

• Algorithmic and storage efficiency are a
concern: interactivity/response time.

Searching the WWW

Search: Queries

• Searches are initiated by a user-
supplied query.

• Three types of queries discussed:

• Specific queries.

• Broad-topic queries.

• Similar content queries.

Search: Problems.

• Specific queries: Scarcity.

• Required information is scarce and
pages are hard to find.

• Broad-topic queries: Abundance.

• We only want the authoritative pages.
(i.e.: Wikipedia itself, not ad-clones.)

Search: Authorities

• Possible measures of authority:

• Frequency of search term on page.

• Problem: Self-descriptive.

• Popularity of page. (rank by links in)

• Problem: Obfuscation by hubs.

• Analysis of link structure...

Hyperlinks

• Claim:
Hyperlinks indicate conferred authority.

• Claim:
Hyperlinks solve self-descriptive problem.

• What about navigational links?

• What about paid advertisements?

Popularity

• In some cases, most authoritative
pages aren’t self-descriptive.

• Universally popular pages would be
considered highly authoritative w.r.t
any query string, when they are not.

Step 1: Constructing
Focused Subgraph

• Obtain root set, R, from textual search.

• Relatively small, rich in relevant pages,
but doesn’t contain most or many of
strongest authorities.

• Extremely few intra-R links.

• Obtain base set, S, from R by adding any
pages pointing to or pointed from R.

Figure 1: Expanding the root set into a base set.

engine such as AltaVista [17] or Hotbot [57]. We will refer to these t pages as the root

set Rσ. This root set satisfies (i) and (ii) of the desiderata listed above, but it generally is

far from satisfying (iii). To see this, note that the top t pages returned by the text-based

search engines we use will all contain the query string σ, and hence Rσ is clearly a subset

of the collection Qσ of all pages containing σ. Above we argued that even Qσ will often

not satisfy condition (iii). It is also interesting to observe that there are often extremely

few links between pages in Rσ, rendering it essentially “structureless”. For example, in our

experiments, the root set for the query "java" contained 15 links between pages in different

domains; the root set for the query "censorship" contained 28 links between pages in

different domains. These numbers are typical for a variety of the queries tried; they should

be compared with the 200 · 199 = 39800 potential links that could exist between pages in

the root set.

We can use the root set Rσ, however, to produce a set of pages Sσ that will satisfy the

conditions we’re seeking. Consider a strong authority for the query topic — although it may

well not be in the set Rσ, it is quite likely to be pointed to by at least one page in Rσ. Hence,

we can increase the number of strong authorities in our subgraph by expanding Rσ along

the links that enter and leave it. In concrete terms, we define the following procedure.

Subgraph(σ,E ,t,d)
σ: a query string.
E : a text-based search engine.
t, d: natural numbers.
Let Rσ denote the top t results of E on σ.

5

R → S

• What about navigational links?

• Transverse vs. intrinsic links.

• Delete all intrinsic links.

• Caveats?

• What about “Google Bombing”?

• Set limitations on in-degree or out-
degree on a per-domain basis.

• Given our focused subgraph G, now what?

• Popularity ranking by in-degree?

• Popularity ≠ relevance.

• Hub: links to multiple relevant authorities.

• Authorities: high in-degree and overlap.

• Hubs & Authorities: Mutually reinforcing.

Step 2: Computing Hubs
and Authorities

hubs authorities

unrelated page
of large in-degree

Figure 2: A densely linked set of hubs and authorities.

Hubs and authorities exhibit what could be called a mutually reinforcing relationship: a

good hub is a page that points to many good authorities; a good authority is a page that is

pointed to by many good hubs. Clearly, if we wish to identify hubs and authorities within

the subgraph Gσ, we need a method for breaking this circularity.

An Iterative Algorithm. We make use of the relationship between hubs and authorities

via an iterative algorithm that maintains and updates numerical weights for each page. Thus,

with each page p, we associate a non-negative authority weight x〈p〉 and a non-negative hub

weight y〈p〉. We maintain the invariant that the weights of each type are normalized so their

squares sum to 1:
∑

p∈Sσ
(x〈p〉)2 = 1, and

∑
p∈Sσ

(y〈p〉)2 = 1. We view the pages with larger x-

and y-values as being “better” authorities and hubs respectively.

Numerically, it is natural to express the mutually reinforcing relationship between hubs

and authorities as follows: If p points to many pages with large x-values, then it should

receive a large y-value; and if p is pointed to by many pages with large y-values, then

it should receive a large x-value. This motivates the definition of two operations on the

weights, which we denote by I and O. Given weights {x〈p〉}, {y〈p〉}, the I operation updates

the x-weights as follows.

x〈p〉 ←
∑

q:(q,p)∈E

y〈q〉.

The O operation updates the y-weights as follows.

y〈p〉 ←
∑

q:(p,q)∈E

x〈q〉.

Thus I and O are the basic means by which hubs and authorities reinforce one another.

(See Figure 3.)

Now, to find the desired “equilibrium” values for the weights, one can apply the I and

O operations in an alternating fashion, and see whether a fixed point is reached. Indeed, we

can now state a version of our basic algorithm. We represent the set of weights {x〈p〉} as a

8

Iterative Algorithm

• Subgraph G = (V, A).

• Normalized weights, x<p> & y<p>.

• Update operations, I & O.

• Mutually reinforcing:

• I: x<p> = ∑y<q> ∀ q : (q, p) ∈ A.

• O: y<p> = ∑x<q> ∀ q : (p, q) ∈ A.

Figure 3: The basic operations.

vector x with a coordinate for each page in Gσ; analogously, we represent the set of weights

{y〈p〉} as a vector y.

Iterate(G,k)
G: a collection of n linked pages
k: a natural number
Let z denote the vector (1, 1, 1, . . . , 1) ∈ Rn.
Set x0 := z.

Set y0 := z.

For i = 1, 2, . . . , k

Apply the I operation to (xi−1, yi−1), obtaining new x-weights x′
i.

Apply the O operation to (x′
i, yi−1), obtaining new y-weights y′i.

Normalize x′
i, obtaining xi.

Normalize y′i, obtaining yi.
End
Return (xk, yk).

This procedure can be applied to filter out the top c authorities and top c hubs in the

9

I & O

• x is a vector containing all x<p>

• y is a vector containing all y<p>

• Iterate(k): apply I & O and normalize.

• Filter(c): obtain c largest coordinates.

• Optimization of k is trivial:

• x and y converge eventually. (3.1)

Figure 3: The basic operations.

vector x with a coordinate for each page in Gσ; analogously, we represent the set of weights

{y〈p〉} as a vector y.

Iterate(G,k)
G: a collection of n linked pages
k: a natural number
Let z denote the vector (1, 1, 1, . . . , 1) ∈ Rn.
Set x0 := z.

Set y0 := z.

For i = 1, 2, . . . , k

Apply the I operation to (xi−1, yi−1), obtaining new x-weights x′
i.

Apply the O operation to (x′
i, yi−1), obtaining new y-weights y′i.

Normalize x′
i, obtaining xi.

Normalize y′i, obtaining yi.
End
Return (xk, yk).

This procedure can be applied to filter out the top c authorities and top c hubs in the

9

Iterate

following simple way.

Filter(G,k,c)
G: a collection of n linked pages
k,c: natural numbers
(xk, yk) := Iterate(G, k).
Report the pages with the c largest coordinates in xk as authorities.
Report the pages with the c largest coordinates in yk as hubs.

We will apply the Filter procedure with G set equal to Gσ, and typically with c ≈ 5-10.

To address the issue of how best to choose k, the number of iterations, we first show that

as one applies Iterate with arbitrarily large values of k, the sequences of vectors {xk} and

{yk} converge to fixed points x∗ and y∗.

We require the following notions from linear algebra, and refer the reader to a text

such as [30] for more comprehensive background. Let M be a symmetric n × n matrix.

An eigenvalue of M is a number λ with the property that, for some vector ω, we have

Mω = λω. The set of all such ω is a subspace of Rn, which we refer to as the eigenspace

associated with λ; the dimension of this space will be referred to as the multiplicity of

λ. It is a standard fact that M has at most n distinct eigenvalues, each of them a real

number, and the sum of their multiplicities is exactly n. We will denote these eigenvalues

by λ1(M), λ2(M), . . . , λn(M), indexed in order of decreasing absolute value, and with each

eigenvalue listed a number of times equal to its multiplicity. For each distinct eigenvalue, we

choose an orthonormal basis of its eigenspace; considering the vectors in all these bases, we

obtain a set of eigenvectors ω1(M), ω2(M), . . . , ωn(M) that we can index in such a way that

ωi(M) belongs to the eigenspace of λi(M).

For the sake of simplicity, we will make the following technical assumption about all the

matrices we deal with:

(†) |λ1(M)| > |λ2(M)|.

When this assumption holds, we refer to ω1(M) as the principal eigenvector, and all other

ωi(M) as non-principal eigenvectors. When the assumption does not hold, the analysis

becomes less clean, but it is not affected in any substantial way.

We now prove that the Iterate procedure converges as k increases arbitrarily.

Theorem 3.1 The sequences x1, x2, x3, . . . and y1, y2, y3, . . . converge (to limits x∗ and y∗

respectively).

Proof. Let G = (V, E), with V = {p1, p2, . . . , pn}, and let A denote the adjacency matrix of

the graph G; the (i, j)th entry of A is equal to 1 if (pi, pj) is an edge of G, and is equal to

0 otherwise. One easily verifies that the I and O operations can be written x ← ATy and

y ← Ax respectively. Thus xk is the unit vector in the direction of (ATA)k−1ATz, and yk is

the unit vector in the direction of (AAT)kz.

10

Filter

• Textual search as black box.

• Only probabilistically global.

• Does not address scarcity problem.

Method Quirks

Similar-Page Queries

• “similar:www.example.com”

• Very little modification necessary!

• Obtain root set from in-pages search.

• R = t pages pointing to p.

• In-degree still not a good ranking.

Related Work

• Standing in social networks.

• Influence in scientific citation networks.

• PageRank. (i.e.: WWW indices, no hubs)

Multiple Sets of H&A

• What about ambiguous query terms?
(Terms with several meanings.)

• What about different contexts?

• What about polarized issues? (Groups
that won’t link to one another, but are
debating the same topic.)

• Clusters exist.

Diffusion and
Generalization

• Diffusion: pages corresponding to “broader”
topics than the query string are returned, or
reference page has insufficient in-degree.

• Was the query string too specific?

• Possible solutions?

• Non-principal eigenvectors.

• Textual approaches (i.e.: term-matching)

Conclusions

• Abundance problem is harder each day.

• Calls for search engines to consider more
than simple relevance and clustering.

• Growth of WWW makes indexing harder.

• WWW search results must be global,
WWW search process doesn’t have to be.

• Quality of results is critical, more so as the
WWW grows and becomes polluted.

Conclusions

• WWW is social.
(Social organization is represented.)

• Further avenues:

• User traffic pattern analysis.

• Eigenvector-based heuristics. (LSA)

• Link-based methods for other queries.

