Searching for

Authority on the WWW

(Not just relevance or popularity...)

Ido Rosen

<ido@cs.uchicago.edu>

Sources of Information on the WWW

- Textual content
- Images, sounds, multimedia content
- Hyperlink digraph (network structure)
 - Pages are vertices, links are arcs
 - Refinement: URLs are nodes

Nature of the WWW

- Local organization may be a priori.
- Global organization "utterly unplanned."
- Billions of agents (users, spiders).
- Millions of publishers.
- Trillions of vertices, at least.
- Too big for simple search.

Searching the WWW

- **Quality** of search method defined by utility of results.
- **Utility** requires human evaluation.
- Utility is closely correlated to relevance.
- Algorithmic and storage **efficiency** are a concern: interactivity/response time.

Search: Queries

- Searches are initiated by a usersupplied **query**.
- Three types of queries discussed:
 - Specific queries.
 - Broad-topic queries.
 - Similar content queries.

Search: Problems.

- Specific queries: Scarcity.
 - Required information is scarce and pages are hard to find.
- Broad-topic queries: Abundance.
 - We only want the **authoritative** pages. (i.e.: Wikipedia itself, not ad-clones.)

Search: Authorities

- Possible measures of authority:
 - Frequency of search term on page.
 - Problem: Self-descriptive.
 - Popularity of page. (rank by links in)
 - Problem: Obfuscation by **hubs**.
 - Analysis of link structure...

Hyperlinks

- Claim:
 Hyperlinks indicate conferred authority.
- Claim:
 Hyperlinks solve self-descriptive problem.
- What about navigational links?
- What about paid advertisements?

Popularity

- In some cases, most authoritative pages aren't self-descriptive.
- Universally popular pages would be considered highly authoritative w.r.t any query string, when they are not.

Step 1: Constructing Focused Subgraph

- Obtain root set, **R**, from textual search.
 - Relatively small, rich in relevant pages, but doesn't contain most or many of strongest authorities.
 - Extremely few intra-R links.
- Obtain base set, **S**, from R by adding any pages pointing to or pointed from R.

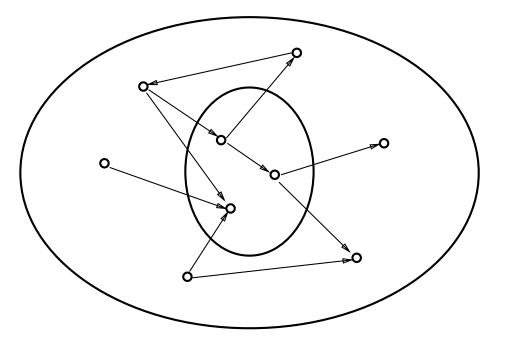


Figure 1: Expanding the root set into a base set.

- What about navigational links?
 - Transverse vs. intrinsic links.
 - Delete all intrinsic links.
 - Caveats?
- What about "Google Bombing"?
 - Set limitations on in-degree or outdegree on a per-domain basis.

Step 2: Computing Hubs and Authorities

- Given our focused subgraph G, now what?
 - Popularity ranking by in-degree?
 - Popularity ≠ relevance.
 - **Hub**: links to multiple relevant authorities.
 - Authorities: high in-degree and overlap.
 - Hubs & Authorities: Mutually reinforcing.

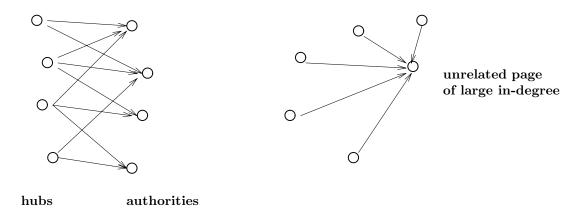


Figure 2: A densely linked set of hubs and authorities.

Iterative Algorithm

- Subgraph G = (V, A).
- Normalized weights, x & y.
- Update operations, I & O.
- Mutually reinforcing:
 - I: $x = \sum y < q > \forall q : (q, p) \in A$.
 - O: $y = \sum x < q > \forall q : (p, q) \in A$.

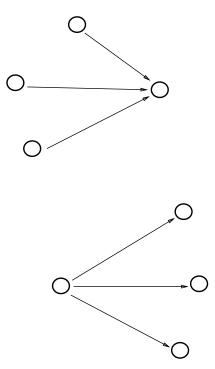


Figure 3: The basic operations.

- x is a vector containing all x
- y is a vector containing all y
- Iterate(k): apply I & O and normalize.
- Filter(c): obtain c largest coordinates.
- Optimization of k is trivial:
 - x and y converge eventually. (3.1)

```
Iterate(G,k)
G: a collection of n linked pages
k: a natural number
Let z denote the vector (1,1,1,\ldots,1) \in \mathbf{R}^n.
Set x_0 := z.
Set y_0 := z.
For i = 1,2,\ldots,k
Apply the \mathcal I operation to (x_{i-1},y_{i-1}), obtaining new x-weights x_i'.
Apply the \mathcal O operation to (x_i',y_{i-1}), obtaining new y-weights y_i'.
Normalize x_i', obtaining x_i.
Normalize y_i', obtaining y_i.
End
Return (x_k,y_k).
```

Iterate

Filter(G,k,c)

G: a collection of n linked pages

k,c: natural numbers

 $(x_k, y_k) := \text{Iterate}(G, k).$

Report the pages with the c largest coordinates in x_k as authorities.

Report the pages with the c largest coordinates in y_k as hubs.

Filter

Method Quirks

- Textual search as black box.
- Only probabilistically global.
- Does not address scarcity problem.

Similar-Page Queries

- "similar:www.example.com"
- Very little modification necessary!
- Obtain root set from in-pages search.
 - R = t pages pointing to p.
- In-degree still not a good ranking.

Related Work

- Standing in social networks.
- Influence in scientific citation networks.
- PageRank. (i.e.: WWW indices, no hubs)

Multiple Sets of H&A

- What about ambiguous query terms? (Terms with several meanings.)
- What about different contexts?
- What about polarized issues? (Groups that won't link to one another, but are debating the same topic.)
- Clusters exist.

Diffusion and Generalization

- **Diffusion**: pages corresponding to "broader" topics than the query string are returned, or reference page has insufficient in-degree.
 - Was the query string too specific?
- Possible solutions?
 - Non-principal eigenvectors.
 - Textual approaches (i.e.: term-matching)

Conclusions

- Abundance problem is harder each day.
 - Calls for search engines to consider more than simple relevance and clustering.
- Growth of WWW makes indexing harder.
- WWW search results must be **global**, WWW search process doesn't have to be.
- Quality of results is critical, more so as the WWW grows and becomes polluted.

Conclusions

- WWW is social. (Social organization is represented.)
- Further avenues:
 - User traffic pattern analysis.
 - Eigenvector-based heuristics. (LSA)
 - Link-based methods for other queries.