Topics In Automated Deduction
(CS 576)

Elsa L. Gunter
2112 Siebel Center
egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/csb76/

egunter@cs.uiuc.edu
http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cs.uiuc.edu/class/sp06/cs576/

Variables

T hree kinds of variables in Isabelle:

e bound: Vx. x = x
o free: x=x

e schematic: 7x =7x

(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. dy. f 7a y=>

2

Variables

e Logically: free = bound at meta-level

e Operationally:

— free variabes are fixed
— schematic variables are instantiated by substitu-

tions

From x to 7x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [] = xs"

done
After the proof: Isabelle changes xs to ?xs (internally):

?7xs @ [] = 7xs

Now usable with arbitrary values for ?xs

Example: rewriting
rev(a @ []) = rev a

using app Nil2 with o = {7xs +— a}

Basic Simplification

Goal: 1. [|Py;...;Pp] = C
apply (simp add: eq thmy ... eq_thmpy)

Simplify (mostly rewrite) Py;...; Py and C using
e lemmas with attribute simp
e rules from primrec and datatype
e additional lemmas eq_thmq1 ... eq_thmpy
e assumptions Pq;...; Pm

Variations:

@ (simp ...del: ...) removes simp-lemmas
e add and del are optional

auto Ve€rsus simp

e auto acts on all subgoals
e simp acts only on subgoal 1

e auto applies simp and more

— simp concentrates on rewriting

— auto combines rewriting with resolution

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to
right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

I]P]_,Pnl])’l T

IS only suitable as a simp-rule only if [is “bigger’” than
r and each F;.
(n<m) = (Suc n < Suc m) NO

(n<m) = (n < Suc m) = True YES
Suc n <m=——= (n<m) =True NO

Assumptions and Simplification

Simplification of [|A41,...,An]] = B:

e Simplify A; to Af

e Simplify [Ao,..., Ay] = B using A}

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce
non-termination.
How to exclude assumptions from simp:

apply (simp (no asm simp)...)

Simplify only the conclusion, but use assumptions

apply (simp (no asm use)...)

Simplify all, but do not use assumptions

apply (simp (no asm)...)

Ignore assumptions completely

Rewriting with Definitions (constdefs)

Definitions do not have the simp attirbute.

They must be used explicitly:
apply (simp add: f.def ...)
Alternately, to just expand the definition:

apply (unfold f def ...)

10

Ordered Rewriting

Problem: ?x+47y =7y+47x does not terminate
Solution: Permutative simp-rules are used only if the
term becomes lexicographically smaller.

Example: b+a~ a-+ b but not a-+ b~ b+ a.

For types nat, int, etc., commutative, associative and
distributive laws built in.

Example: apply simp yields:

(B+A)+((2:nat) «C)) + (A+B) ~
~> Q*A—l—(Q*B—I-Q*C)

11

Preprocessing

simp-rules are preprocessed (recursively) for maximal

simplification power:

—A — A = False
A—B — A— B
ANB — A B
V. A(z) — A(?z)
A — A = True
Example:

(p — gA—Tr)As +— p== q= True,r = False,s = True

12

Case Splitting with simp

P(if A then s else t) = ((A — P(s)) A (mA — P(%)))

Automatic by apply (simp)

Generalizing to case:

P(case exp of 0 = alSucn = b) =
((e =0 —P(a)) A (Vn. exp = Suc n — P(b)))

Needs more direction: apply (simp split: nat.split)

Similar for any datatype t: t.split

13

Demo: Simplification through Rewriting

14

Basic Induction Heuristics

e [heorems about recursive functions are proved by

induction

e If f defined by induction on ¢th argument, proof is

by induction of ith argument of f

15

Example: Tail Recursive Reverse

consts itrev :: ’a list = ’a list = ’a list
primrec
itrev [] ysS = ys

itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

This direction is easier to prove/use

lhs “more complex” than rhs

16

Demo: first attempt at itrev = rev

17

Generalization (first kind)

Replace constant arguments ([1) by variables:

lemma itrev xs ys = rev xs Q ys

18

Demo: second attempt at itrev = rev

19

Generalization (second Kind)

Quantify all free variables by V,

except the induction variable

lemma V ys. itrev xs ys = rev xs @ ys

20

Proof Basics

e Isabelle uses Natural Deduction proofs
— Uses sequent encoding

e Rule notation:

Rule Sequent Encoding
Al'A'An lA1, ..., Ap = A
B

21

Natural Deduction

For each logical operator ¢, have two Kinds of rules:

Introduction: How can I prove A$ B~?
e
AP B

Elimination: What can I prove using A& B?

...A®B...
?

22

Operational Reading

A

Introduction rule:

To prove A it suffices to prove A;... Ap,.
Elimination rule:

If we know A1 and we want to prove A

it suffices to prove A>... Ay

23

Natural Deduction for Propositional Logic

conjl
AANB

A B
AVBAVB

disjI1/2

A—>B

impl
A—B

AAB [|A;B] = C
C

conjkE

AVBA— CB=—7C

disjE
C

A— BAB=——C

impE
C

24

Natural Deduction for Propositional Logic

A—BB— A A=B A
iffI iffD1
A = B
A=B B
iffD2
A
A — False —A A
notl notk

—A B

25

