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Variables

Three kinds of variables in Isabelle:

• bound: ∀x. x = x

• free: x = x

• schematic: ?x =?x

(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y. f ?a y = b
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Variables

• Logically: free = bound at meta-level

• Operationally:

– free variabes are fixed

– schematic variables are instantiated by substitu-

tions
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From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [ ] = xs"

...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [ ] = ?xs

Now usable with arbitrary values for ?xs

Example: rewriting

rev(a @ [ ]) = rev a

using app Nil2 with σ = {?xs 7→ a}
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Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

apply (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

• lemmas with attribute simp

• rules from primrec and datatype

• additional lemmas eq thm1 . . . eq thmn

• assumptions P1; . . . ;Pm

Variations:

• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional
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auto versus simp

• auto acts on all subgoals

• simp acts only on subgoal 1

• auto applies simp and more

– simp concentrates on rewriting

– auto combines rewriting with resolution
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Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to

right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

[|P1, . . . Pn|] =⇒ l = r

is only suitable as a simp-rule only if l is “bigger” than

r and each Pi.

(n < m) = (Suc n < Suc m) NO
(n < m) =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO
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Assumptions and Simplification

Simplification of [|A1, . . . , An|] =⇒ B:

• Simplify A1 to A′
1

• Simplify [|A2, . . . , An|] =⇒ B using A′
1
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Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce

non-termination.

How to exclude assumptions from simp:

apply (simp (no asm simp). . . )

Simplify only the conclusion, but use assumptions

apply (simp (no asm use). . . )

Simplify all, but do not use assumptions

apply (simp (no asm). . . )

Ignore assumptions completely
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Rewriting with Definitions (constdefs)

Definitions do not have the simp attirbute.

They must be used explicitly:

apply (simp add: f def . . . )

Alternately, to just expand the definition:

apply (unfold f def . . . )
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Ordered Rewriting

Problem: ?x+?y =?y+?x does not terminate

Solution: Permutative simp-rules are used only if the

term becomes lexicographically smaller.

Example: b+ a ; a+ b but not a+ b ; b+ a.

For types nat, int, etc., commutative, associative and

distributive laws built in.

Example: apply simp yields:

((B + A) + ((2 :: nat) ∗ C)) + (A + B) ;

. . . ; 2 ∗A + (2 ∗B + 2 ∗ C)
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Preprocessing

simp-rules are preprocessed (recursively) for maximal

simplification power:
¬A 7→ A = False

A −→ B 7→ A =⇒ B
A ∧B 7→ A, B

∀x.A(x) 7→ A(?x)
A 7→ A = True

Example:

(p −→ q∧¬r)∧ s 7→ p =⇒ q = True, r = False, s = True
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Case Splitting with simp

P(if A then s else t) = ((A −→ P(s)) ∧ (¬A −→ P(t)))

Automatic by apply (simp)

Generalizing to case:

P(case exp of 0 ⇒ a|Suc n ⇒ b) =
((e = 0 −→ P(a)) ∧ (∀n. exp = Suc n −→ P(b)))

Needs more direction: apply (simp split: nat.split)

Similar for any datatype t: t.split
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Demo: Simplification through Rewriting
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Basic Induction Heuristics

• Theorems about recursive functions are proved by

induction

• If f defined by induction on ith argument, proof is

by induction of ith argument of f
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Example: Tail Recursive Reverse

consts itrev :: ’a list ⇒ ’a list ⇒ ’a list

primrec
itrev [ ] ys = ys

itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs

This direction is easier to prove/use

lhs “more complex” than rhs
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Demo: first attempt at itrev = rev
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Generalization (first kind)

Replace constant arguments ([ ]) by variables:

lemma itrev xs ys = rev xs @ ys
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Demo: second attempt at itrev = rev
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Generalization (second kind)

Quantify all free variables by ∀,

except the induction variable

lemma ∀ ys. itrev xs ys = rev xs @ ys
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Proof Basics

• Isabelle uses Natural Deduction proofs

– Uses sequent encoding

• Rule notation:

Rule Sequent Encoding
A1 . . . An

A
[|A1, . . . , An|] =⇒ A

A1 . . .

B
...
Ai . . . An
A

[|A1, . . . , B =⇒ Ai, . . . , An|] =⇒ A
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Natural Deduction

For each logical operator ⊕, have two kinds of rules:

Introduction: How can I prove A⊕B?

?
A⊕B

Elimination: What can I prove using A⊕B?

. . . A⊕B . . .

?
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Operational Reading

A1 . . . An

A
Introduction rule:

To prove A it suffices to prove A1 . . . An.

Elimination rule:

If we know A1 and we want to prove A

it suffices to prove A2 . . . An
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Natural Deduction for Propositional Logic

A B
conjI

A ∧ B

A ∧ B [|A; B|] =⇒ C
conjE

C

A

A ∨ B

B
disjI1/2

A ∨ B

A ∨ B A =⇒ C B =⇒ C
disjE

c

A =⇒ B
impI

A −→ B

A −→ B A B =⇒ C
impE

C
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Natural Deduction for Propositional Logic

A =⇒ B B =⇒ A
iffI

A = B

A = B A
iffD1

B

A = B B
iffD2

A

A =⇒ False
notI

¬A

¬A A
notE

B
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