Topics in Automated Deduction (CS 576)

```
Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/
```

Variables

Three kinds of variables in Isabelle:

- bound: $\forall x. \ x = x$
- free: x = x
- schematic: ?x = ?x("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b. \exists y. f ? a y = b$

Variables

- Logically: free = bound at meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

From x to ?x

State lemmas with free variables:

```
lemma app_Nil2 [simp]: "xs @ [ ] = xs"
done
After the proof: Isabelle changes xs to ?xs (internally):
                     ?xs @ [ ] = ?xs
Now usable with arbitrary values for ?xs
Example: rewriting
                  rev(a @ [ ]) = rev a
using app_Nil2 with \sigma = \{ \text{?xs} \mapsto \text{a} \}
```

Basic Simplification

```
Goal: 1. [P_1; ...; P_m] \Longrightarrow C

apply (simp add: eq\_thm_1 ... eq\_thm_n)

Simplify (mostly rewrite) P_1; ...; P_m and C using
```

- lemmas with attribute simp
- rules from primrec and datatype
- ullet additional lemmas $eq_thm_1 \ \dots \ eq_thm_n$
- assumptions $P_1; \ldots; P_m$

Variations:

- (simp ...del: ...) removes simp-lemmas
- add and del are optional

auto Versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
 - simp concentrates on rewriting
 - auto combines rewriting with resolution

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

$$[P_1, \dots P_n] \Longrightarrow l = r$$

is only suitable as a simp-rule only if l is "bigger" than r and each P_i .

$$(n < m) = (Suc n < Suc m)$$
 NO
 $(n < m) \Longrightarrow (n < Suc m) = True$ YES
 $Suc n < m \Longrightarrow (n < m) = True$ NO

Assumptions and Simplification

Simplification of $[A_1, \ldots, A_n] \Longrightarrow B$:

- Simplify A_1 to A'_1
- Simplify $[A_2, \ldots, A_n] \Longrightarrow B$ using A_1'

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.

```
How to exclude assumptions from simp:

apply (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

apply (simp (no_asm_use)...)

Simplify all, but do not use assumptions

apply (simp (no_asm)...)
```

Ignore assumptions completely

Rewriting with Definitions (constdefs)

Definitions do not have the simp attirbute.

They must be used explicitly:

```
apply (simp add: f_def ...)
```

Alternately, to just expand the definition:

```
apply (unfold f_def ...)
```

Ordered Rewriting

Problem: ?x+?y=?y+?x does not terminate

Solution: Permutative simp-rules are used only if the term becomes lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int, etc., commutative, associative and distributive laws built in.

Example: apply simp yields:

$$((B+A)+((2::nat)*C))+(A+B) \sim$$
... $\sim 2*A+(2*B+2*C)$

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

$$\neg A \mapsto A = \text{False}$$
 $A \longrightarrow B \mapsto A \Longrightarrow B$
 $A \land B \mapsto A, B$
 $\forall x.A(x) \mapsto A(?x)$
 $A \mapsto A = \text{True}$

Example:

$$(p \longrightarrow q \land \neg r) \land s \mapsto p \Longrightarrow q = True, r = False, s = True$$

Case Splitting with simp

$$P(if A then s else t) = ((A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t)))$$

Automatic by apply (simp)

Generalizing to case:

```
P(\text{case exp of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b) =
((e = 0 \longrightarrow P(a)) \land (\forall n. \text{ exp} = \text{Suc } n \longrightarrow P(b)))
```

Needs more direction: apply (simp split: nat.split)

Similar for any datatype t: t.split

Demo: Simplification through Rewriting

Basic Induction Heuristics

- Theorems about recursive functions are proved by induction
- ullet If f defined by induction on ith argument, proof is by induction of ith argument of f

Example: Tail Recursive Reverse

This direction is easier to prove/use lhs "more complex" than rhs

Demo: first attempt at itrev = rev

Generalization (first kind)

Replace constant arguments ([]) by variables:

lemma itrev xs ys = rev xs @ ys

Demo: second attempt at itrev = rev

Generalization (second kind)

Quantify all free variables by \forall , except the induction variable

lemma \forall ys. itrev xs ys = rev xs @ ys

Proof Basics

- Isabelle uses Natural Deduction proofs
 - Uses *sequent* encoding
- Rule notation:

Rule
$$\frac{A_1 \dots A_n}{A}$$

Sequent Encoding

$$[\![\mathtt{A}_1, \ldots, \mathtt{A}_n]\!] \Longrightarrow \mathtt{A}$$

$$\begin{array}{c} \mathsf{B} \\ \\ \underbrace{\mathsf{A}_1 \dots \, \frac{:}{\mathsf{A}_{\underline{\mathtt{i}}} \, \dots \, \mathsf{A}_{\underline{\mathtt{n}}}}_{\mathsf{A}} \end{array} } \quad \llbracket \mathsf{A}_1, \dots, \mathsf{B} \Longrightarrow \mathsf{A}_{\underline{\mathtt{i}}}, \dots, \mathsf{A}_{\underline{\mathtt{n}}} \rrbracket \Longrightarrow \mathsf{A}$$

Natural Deduction

For each logical operator \oplus , have two kinds of rules:

Introduction: How can I prove $A \oplus B$?

$$rac{ extbf{?}}{A\oplus B}$$

Elimination: What can I prove using $A \oplus B$?

$$\frac{\ldots A \oplus B \ldots}{?}$$

Operational Reading

$$\frac{A_1 \dots A_n}{A}$$

Introduction rule:

To prove A it suffices to prove $A_1 \dots A_n$.

Elimination rule:

If we know A_1 and we want to prove A it suffices to prove $A_2 \dots A_n$

Natural Deduction for Propositional Logic

$$\frac{A \quad B}{A \wedge B} \stackrel{\textbf{conjI}}{\text{conjE}} \qquad \frac{A \wedge B \quad A; B \implies C}{C} \stackrel{\textbf{conjE}}{\text{conjE}}$$

$$\frac{A \quad B}{A \vee B \quad A \vee B} \stackrel{\textbf{B}}{\text{disjI1/2}} \qquad \frac{A \vee B \quad A \implies C \quad B \implies C}{c} \stackrel{\textbf{disjE}}{\text{conjE}}$$

$$\frac{A \implies B}{A \longrightarrow B} \stackrel{\textbf{impI}}{\text{impI}} \qquad \frac{A \longrightarrow B \quad A \quad B \implies C}{C} \stackrel{\textbf{impE}}{\text{conjE}}$$

Natural Deduction for Propositional Logic

$$\frac{A \Longrightarrow B \ B \Longrightarrow A}{A = B} \quad \frac{A = B \quad A}{B} \quad \frac{A = B \quad A}{B}$$

$$\frac{A = B \quad B}{A} \quad \frac{A = B \quad B}{A} \quad \frac{$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ notI} \qquad \frac{\neg A \quad A}{B} \text{ notE}$$