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HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, isf x = f x7

Excluded Middle says it must be True oOr False

Reflexivity says it's True

How about f x =07 fx =17 fx=y? If f x £ y
for arbitrary y, then Vy. £ x #= y. Then f x = f x #

I All functions in HOL must be total !



Function Definition in Isabelle/HOL

e Non-recursive definitions with defs/constdefs

No problem

e Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally

e Well-founded recursion with recdef
User must (help to) prove termination

(~ later)



primrec Example

primrec

"app Nil ys = ys'"

"app (Cons x xs) ys = Cons x (app xs ys)"



primrec: The General Case

If 7 is a datatype with constructors Cy,...,CL, then
f ::--. =71 = 7" can be defined by primitive recursion
by:

frz1...(City11---Y1ny) - Tm =11

fx1...(Cpyg1- - -Yrn) - -Tm =Ty
The recursive calls in »;, must be structurally smaller,

i.e. of the form f aj...y;;...am.



nat IS a datatype

datatype nat = 0 | Suc nat
Functions on nat are definable by primrec!
primrec

f 0= ...
f (Sucn) =...fn ...



Type option

datatype ’a option = None | Some ’a

Important application:

partial function:
NO result
result of x

... = ’a option
None
Some X

QX &



option Example

consts lookup :: ’k = (’kX’v)list = ’v option
primrec

lookup k [ ] = None

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)



case

Every datatype introduces a case construct, e.g.

(case xs of [ ] =...| y#ys = ...y ...ys ...)

In general: one case per constructor

Same number of cases as in datatype

— (Cases in same order as constructors in datatype
No nested patterns (e.g. xX# y# zS)

Nested cases are allowed

Needs ( ) in context



Case Distinctions

apply (case tac t)

creates k subgoals:

1

one for each constructor C;
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Demo: Trees
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Term Rewriting

Term rewriting means . ..

Terminology: equation becomes rewrite rule

Using a set of equations [ = r from left to right

As long as possible (possibly forever!)
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Equations:

(Suc m < Suc n)

Rewriting:

Example

O+n
(Suc m) +n
(0 <m)

O + Suc O
Suc O

Suc O

0

VAN VAN VAR VAN

True

= (1)
= Suc(m+n) (2)
= True (3)
= (m<n) (4)
Suc O+ (1)
Suc 0+z (2)
Suc(0 +z) (4)
0+ 3)
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Rewriting: More Formally

substitution = mapping of variables to terms

e [ = r is applicable to term t[s] if there is a substi-

tution o such that o(l) = s

— s IS an instance of [

e Result: t[o(r)]

e Also have theorem: t[s] = t[o(r)]
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Example

Equation: O+n =mn

Term: a4+ (04 (b4 ¢))

Substitution: ¢ = {n — b+ ¢}

Result: a4+ (b+ ¢)

Theorem: a4+ (0+(b+c¢)) =a—+ (b+c¢)
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Conditional Rewriting

Rewrite rules can be conditional:
[P1;...; Pl = 1l=r

IS applicable to term t[s] with substitution o if:

e 0(l) = s and
e 0(P1),...,0(Py) are provable (possibly again by rewrit-

ing)
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Variables

T hree kinds of variables in Isabelle:

e bound: Vx. x = x
o free: x=x

e schematic: 7x =7x

(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. dy. f 7a y=>

17



Variables

e Logically: free = bound at meta-level

e Operationally:

— free variabes are fixed
— schematic variables are instantiated by substitu-

tions
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From x to 7x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [ ] = xs"

done
After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [ ] = ?xs
Now usable with arbitrary values for ?xs
Example: rewriting
rev(a @ [ ]) = rev a

using app Nil2 with o = {7xs +— a}
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Basic Simplification

Goal: 1. [|Py;...;Pp] = C
apply (simp add: eq thmy ... eq_thmpy)

Simplify (mostly rewrite) Py;...; Py and C using
e lemmas with attribute simp
e rules from primrec and datatype
e additional lemmas eq_thmq1 ... eq_thmpy
e assumptions Pq;...; Pm

Variations:

@ (simp ...del: ...) removes simp-lemmas
e add and del are optional

20



auto Ve€rsus simp

e auto acts on all subgoals
e simp acts only on subgoal 1

e auto applies simp and more

— simp concentrates on rewriting

— auto combines rewriting with resolution
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Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to
right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

I]P]_,Pnl] )’l T

IS only suitable as a simp-rule only if [ is “bigger’” than
r and each F;.
(n <m) = (Sucn < Sucm) NO

(n <m) = (n < Sucm) = True YES
Sucn <m == (n <m) = True NO

22



Assumptions and Simplification

Simplification of [|A41,...,An]] = B:

e Simplify A; to Af

e Simplify [Ao,..., Ay] = B using A}
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Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce
non-termination.
How to exclude assumptions from simp:

apply (simp (no asm simp)...)

Simplify only the conclusion, but use assumptions

apply (simp (no asm use)...)

Simplify all, but do not use assumptions

apply (simp (no asm)...)

Ignore assumptions completely
24



Rewriting with Definitions (constdefs)

Definitions do not have the simp attirbute.

They must be used explicitly:

apply (simp add: f.def ...)
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Ordered Rewriting

Problem: ?x47y =7y+4+7x does not terminate
Solution: Permutative simp-rules are used only if the
term becomes lexicographically smaller.

Example: b4+a~a-+ b but not a+ b~ b+ a.

For types nat, int, etc., commutative, associative and
distributive laws built in.

Example: apply simp Yyields:

(B+A)+ (2 nat)«C)) + (A+ B) ~
o~ 2% A4+ (2xB4+2x0)
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Preprocessing

simp-rules are preprocessed (recursively) for maximal

simplification power:

#= A — A = False
A—B — A— B
ANB — A B
V. A(z) — A(?z)
A — A = True
Example:

(p — gqA —r) As—p = q = True,r = True, s = True
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Demo: Simplification through Rewriting
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