Topics in Automated Deduction (CS 576)

```
Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/
```

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it's True

How about f x = 0? f x = 1? f x = y? If f x \neq y for arbitrary y, then \forall y. f x \neq y. Then f x \neq f x #

! All functions in HOL must be total !

Function Definition in Isabelle/HOL

- Non-recursive definitions with defs/constdefs
 No problem
- Primitive-recursive (over datatypes) with primrec
 Termination proved automatically internally
- Well-founded recursion with recdef
 User must (help to) prove termination
 (→ later)

primrec Example

primrec

```
"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"
```

primrec: The General Case

If τ is a datatype with constructors C_1, \ldots, C_k , then $f::\cdots \Rightarrow \tau \Rightarrow \tau'$ can be defined by *primitive recursion* by:

$$f \ x_1 \dots (C_1 \ y_{1,1} \dots y_{1,n_1}) \dots x_m = r_1$$

 \dots
 $f \ x_1 \dots (C_k \ y_{k,1} \dots y_{k,n_k}) \dots x_m = r_k$

The recursive calls in r_i must be *structurally smaller*, i.e. of the form f $a_1 \dots y_{i,j} \dots a_m$.

nat is a datatype

```
datatype nat = 0 | Suc nat
```

Functions on nat are definable by primrec!

primrec

```
f 0 = ...

f (Suc n) = ...f n ...
```

Type option

```
datatype 'a option = None | Some 'a
```

Important application:

```
\dots \Rightarrow 'a option \approx partial function:
 None \approx no result
 Some x \approx result of x
```

option Example

```
consts lookup :: 'k \Rightarrow ('k\times'v)list \Rightarrow 'v option
primrec
lookup k [] = None
lookup k (x#xs) =
(if fst x = k then Some(snd x) else lookup k xs)
```

case

Every datatype introduces a case construct, e.g.

(case xs of []
$$\Rightarrow$$
...| y#ys \Rightarrow ...y ...ys ...)

In general: one case per constructor

Same number of cases as in datatype

— Cases in same order as constructors in datatype

No nested patterns (e.g. x# y# zs)

Nested cases are allowed

Needs () in context

Case Distinctions

creates k subgoals:

$$t = C_i \ x_1 \dots x_{n_i} \Longrightarrow \dots$$

one for each constructor C_i

Demo: Trees

Term Rewriting

Term rewriting means . . .

Terminology: equation becomes rewrite rule

Using a set of equations l = r from left to right

As long as possible (possibly forever!)

Example

Equations:
$$\begin{array}{c} 0+n = n \\ (\operatorname{Suc} m) + n = \operatorname{Suc}(m+n) \end{array} (2) \\ (0 \leq m) = \operatorname{True} \\ (\operatorname{Suc} m \leq \operatorname{Suc} n) = (m \leq n) \end{array} (4)$$

$$\begin{array}{c} 0 + \operatorname{Suc} 0 \leq \operatorname{Suc} 0 + x & \underline{(1)} \\ \operatorname{Suc} 0 \leq \operatorname{Suc} 0 + x & \underline{(2)} \\ \operatorname{Suc} 0 \leq \operatorname{O} + x & \underline{(3)} \\ \end{array}$$
 Rewriting:
$$\begin{array}{c} \operatorname{Suc} 0 \leq \operatorname{Suc}(0+x) & \underline{(4)} \\ 0 \leq 0 + x & \underline{(3)} \\ \end{array}$$

$$\begin{array}{c} \operatorname{True} \end{array}$$

Rewriting: More Formally

substitution = mapping of variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
 - -s is an instance of l
- Result: $t[\sigma(r)]$
- Also have theorem: $t[s] = t[\sigma(r)]$

Example

- Equation: 0 + n = n
- Term: a + (0 + (b + c))
- Substitution: $\sigma = \{n \mapsto b + c\}$
- Result: a + (b + c)
- Theorem: a + (0 + (b + c)) = a + (b + c)

Conditional Rewriting

Rewrite rules can be conditional:

$$[\![P_1;\ldots;P_n]\!] \Longrightarrow l = r$$

is applicable to term t[s] with substitution σ if:

- $\sigma(l) = s$ and
- $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (possibly again by rewriting)

Variables

Three kinds of variables in Isabelle:

- bound: $\forall x. \ x = x$
- free: x = x
- schematic: ?x = ?x("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b. \exists y. f ? a y = b$

Variables

- Logically: free = bound at meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

From x to ?x

State lemmas with free variables:

```
lemma app_Nil2 [simp]: "xs @ [ ] = xs"
done
After the proof: Isabelle changes xs to ?xs (internally):
                     ?xs @ [ ] = ?xs
Now usable with arbitrary values for ?xs
Example: rewriting
                  rev(a @ [ ]) = rev a
using app_Nil2 with \sigma = \{ \text{?xs} \mapsto \text{a} \}
```

Basic Simplification

```
Goal: 1. [P_1; ...; P_m] \Longrightarrow C

apply (simp add: eq\_thm_1 ... eq\_thm_n)

Simplify (mostly rewrite) P_1; ...; P_m and C using
```

- lemmas with attribute simp
- rules from primrec and datatype
- ullet additional lemmas $eq_thm_1 \ \dots \ eq_thm_n$
- assumptions $P_1; \ldots; P_m$

Variations:

- (simp ...del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
 - simp concentrates on rewriting
 - auto combines rewriting with resolution

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

$$[P_1, \dots P_n] \Longrightarrow l = r$$

is only suitable as a simp-rule only if l is "bigger" than r and each P_i .

$$(n < m) = (Sucn < Sucm)$$
 NO
 $(n < m) \Longrightarrow (n < Sucm) = True$ YES
 $Sucn < m \Longrightarrow (n < m) = True$ NO

Assumptions and Simplification

Simplification of $[A_1, \ldots, A_n] \Longrightarrow B$:

- Simplify A_1 to A'_1
- Simplify $[A_2, \ldots, A_n] \Longrightarrow B$ using A'_1

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.

```
How to exclude assumptions from simp:

apply (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

apply (simp (no_asm_use)...)

Simplify all, but do not use assumptions

apply (simp (no_asm)...)
```

Ignore assumptions completely

Rewriting with Definitions (constdefs)

Definitions do not have the simp attirbute.

They must be used explicitly:

```
apply (simp add: f_def ...)
```

Ordered Rewriting

Problem: ?x+?y=?y+?x does not terminate

Solution: Permutative simp-rules are used only if the term becomes lexicographically smaller.

Example: $b + a \rightarrow a + b$ but not $a + b \rightarrow b + a$.

For types nat, int, etc., commutative, associative and distributive laws built in.

Example: apply simp yields:

$$((B+A)+((2::nat)*C))+(A+B) \sim 2*A+(2*B+2*C)$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal
simplification power:

$$\begin{array}{cccc}
\neq A & \mapsto & A = \mathtt{False} \\
A \longrightarrow B & \mapsto & A \Longrightarrow B \\
A \land B & \mapsto & A, B \\
\forall x. A(x) & \mapsto & A(?x) \\
A & \mapsto & A = \mathtt{True}
\end{array}$$

Example:

$$(p \longrightarrow q \land \neg r) \land s \mapsto p \Longrightarrow q = True, r = True, s = True$$

Demo: Simplification through Rewriting