
Topics in Automated Deduction
(CS 576)

Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/

1

egunter@cs.uiuc.edu
http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cs.uiuc.edu/class/sp06/cs576/

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it’s True

How about f x = 0? f x = 1? f x = y? If f x 6= y

for arbitrary y, then ∀y. f x 6= y. Then f x 6= f x #

! All functions in HOL must be total !

2

Function Definition in Isabelle/HOL

• Non-recursive definitions with defs/constdefs

No problem

• Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally

• Well-founded recursion with recdef

User must (help to) prove termination

(; later)

3

primrec Example

primrec

"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"

4

primrec: The General Case

If τ is a datatype with constructors C1, . . . , Ck, then

f :: · · · ⇒ τ ⇒ τ ′ can be defined by primitive recursion

by:

f x1 . . . (C1 y1,1 . . . y1,n1
) . . . xm = r1

· · ·
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xm = rk

The recursive calls in ri must be structurally smaller,

i.e. of the form f a1 . . . yi,j . . . am.

5

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec

f 0 = ...

f (Suc n) = ...f n ...

6

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:
None ≈ no result

Some x ≈ result of x

7

option Example

consts lookup :: ’k ⇒ (’k×’v)list ⇒ ’v option

primrec

lookup k [] = None

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

8

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒...| y#ys ⇒ ...y ...ys ...)

In general: one case per constructor

Same number of cases as in datatype

— Cases in same order as constructors in datatype

No nested patterns (e.g. x# y# zs)

Nested cases are allowed

Needs () in context
9

Case Distinctions

apply (case tac t)

creates k subgoals:

t = Ci x1 . . . xni =⇒ . . .

one for each constructor Ci

10

Demo: Trees

11

Term Rewriting

Term rewriting means . . .

Using a set of equations l = r from left to right

As long as possible (possibly forever!)

Terminology: equation becomes rewrite rule

12

Example

Equations:

0 + n = n (1)
(Suc m) + n = Suc(m + n) (2)

(0 ≤ m) = True (3)
(Suc m ≤ Suc n) = (m ≤ n) (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)

Suc 0 ≤ Suc 0 + x (2)

Suc 0 ≤ Suc(0 + x) (4)

0 ≤ 0 + x (3)

True

13

Rewriting: More Formally

substitution = mapping of variables to terms

• l = r is applicable to term t[s] if there is a substi-

tution σ such that σ(l) = s

– s is an instance of l

• Result: t[σ(r)]

• Also have theorem: t[s] = t[σ(r)]

14

Example

• Equation: 0 + n = n

• Term: a + (0 + (b + c))

• Substitution: σ = {n 7→ b + c}

• Result: a + (b + c)

• Theorem: a + (0 + (b + c)) = a + (b + c)

15

Conditional Rewriting

Rewrite rules can be conditional:

[|P1; . . . ;Pn|] =⇒ l = r

is applicable to term t[s] with substitution σ if:

• σ(l) = s and

• σ(P1), . . . , σ(Pn) are provable (possibly again by rewrit-

ing)

16

Variables

Three kinds of variables in Isabelle:

• bound: ∀x. x = x

• free: x = x

• schematic: ?x =?x

(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y. f ?a y = b

17

Variables

• Logically: free = bound at meta-level

• Operationally:

– free variabes are fixed

– schematic variables are instantiated by substitu-

tions

18

From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [] = xs"

...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

Example: rewriting

rev(a @ []) = rev a

using app Nil2 with σ = {?xs 7→ a}
19

Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

apply (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

• lemmas with attribute simp

• rules from primrec and datatype

• additional lemmas eq thm1 . . . eq thmn

• assumptions P1; . . . ;Pm

Variations:

• (simp . . . del: . . .) removes simp-lemmas
• add and del are optional

20

auto versus simp

• auto acts on all subgoals

• simp acts only on subgoal 1

• auto applies simp and more

– simp concentrates on rewriting

– auto combines rewriting with resolution

21

Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to

right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.

[|P1, . . . Pn|] =⇒ l = r

is only suitable as a simp-rule only if l is “bigger” than

r and each Pi.

(n < m) = (Sucn < Sucm) NO
(n < m) =⇒ (n < Sucm) = True YES
Sucn < m =⇒ (n < m) = True NO

22

Assumptions and Simplification

Simplification of [|A1, . . . , An|] =⇒ B:

• Simplify A1 to A′
1

• Simplify [|A2, . . . , An|] =⇒ B using A′
1

23

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce

non-termination.

How to exclude assumptions from simp:

apply (simp (no asm simp). . .)

Simplify only the conclusion, but use assumptions

apply (simp (no asm use). . .)

Simplify all, but do not use assumptions

apply (simp (no asm). . .)

Ignore assumptions completely
24

Rewriting with Definitions (constdefs)

Definitions do not have the simp attirbute.

They must be used explicitly:

apply (simp add: f def . . .)

25

Ordered Rewriting

Problem: ?x+?y =?y+?x does not terminate

Solution: Permutative simp-rules are used only if the

term becomes lexicographically smaller.

Example: b+ a ; a+ b but not a+ b ; b+ a.

For types nat, int, etc., commutative, associative and

distributive laws built in.

Example: apply simp yields:

((B + A) + ((2 :: nat) ∗ C)) + (A + B) ;

. . . ; 2 ∗A + (2 ∗B + 2 ∗ C)

26

Preprocessing

simp-rules are preprocessed (recursively) for maximal

simplification power:
6= A 7→ A = False

A −→ B 7→ A =⇒ B
A ∧B 7→ A, B

∀x.A(x) 7→ A(?x)
A 7→ A = True

Example:

(p −→ q ∧ ¬r) ∧ s7→p =⇒ q = True, r = True, s = True

27

Demo: Simplification through Rewriting

28

