
Topics in Automated Deduction
(CS 576)

Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/

1

egunter@cs.uiuc.edu
http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cs.uiuc.edu/class/sp06/cs576/

Structural Induction on Lists

P xs holds for all lists xs if

• P Nil, and

• for arbitrary a and list, P list implies

P (Cons a list)

P Nil

P ys
...

P (Cons y ys)

P xs
In Isabelle:

[| ?P []; !!a list. ?P list ==> ?P (a # list) |] ==> ?P ?list

2

Proof Method

• Structural Induction

– Syntax: (induct x)

x must be a free variable in the first subgoal

The type of x must be a datatype

– Effect: Generates 1 new subgoal per construc-

tor

– Type of x determines which induction principle

to use

3

A Recursive Function: List Append

Declaration:

consts app :: "’a list ⇒ ’a list ⇒ ’a list

and definition by primitive recursion:

primrec

app Nil ys =

app (Cons x xs) ys = app xs ...

One rule per constructor

Recursive calls only applied to constructor arguments

Guarantees termination (total function)
4

Demo: Append and Reverse

5

Introducing New Types

Keywords:

• typedef: Primitive for type definitions; Only real

way of introducing a new type with new properties

More on this later

• typedecl: Pure declaration; New type with no prop-

erties (expect that it is non-empty)

6

Introducing New Types

Keywords:

• types: Abbreviation - may be used in constant

declarions

• datatype: Defines recursive data-types; solutions

to free algebra specificaitons

Basis for primitive recursive function definitions

7

typedecl

typedecl name

Introduces new “opaque” name without definition

Serves similar role for generic reasoning as polymor-

phism, but can’t be specialized

Example:

typedecl addr — An abstract type of addresses

8

types

types 〈tyvars〉 name = τ

Introduces an abbreviation 〈tyvars〉 name for type τ

Examples:

types

name = string

(’a,’b)foo = "’a list * ’b"

Type abbreviations are expanded immediately

after parsing

Not present in internal representation and Isabelle

output
9

datatype: The Example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:

• Type constructors: Nil :: ’a list

Cons :: ’a ⇒ ’a list ⇒ ’a list

• Distinctness: Nil 6= Cons x xs

• Injectivity:

(Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

10

datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk

• Type Constructors:

Ci :: τi,1 ⇒ . . . ⇒ τi,ni
⇒ (α1, . . . , αm)τ

• Distinctness: Ci xi . . . xi,ni
6= Cj yj . . . yj,nj

if i 6= j

• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) = (x1 =

y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied automatically

Induction must be applied explicitly
11

Definitions by Example

Declaration: consts

lot size :: "nat * nat"

sq : "nat ⇒ nat"

Definition: defs

"lot size ≡ (62, 103)"

sq def: "sq n ≡ n * n"

Declarations
+ definitions: constdefs

lot size :: "nat * nat"

lot size def: "lot size ≡ (62, 103)"

sq : "nat ⇒ nat"

sq def: "sq n ≡ n * n"

12

Definition Restrictions

constdefs

prime :: "nat ⇒ bool"

"prime p ≡ p<1 ∧ (m dvd p −→ m = 1 ∨ m = p)"

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument

on lhs !

"prime p ≡ p<1 ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p)"

Note: no recursive definitions with defs or constdefs
13

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:

apply (unfold sq def)

14

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it’s True

How about f x = 0? f x = 1? f x = y? If 6f x = y

then ∀y. f x = y. Then 6f x = f x #

! All functions in HOL must be total !

15

Function Definition in Isabelle/HOL

• Non-recursive definitions with defs/constdefs

No problem

• Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally

• Well-founded recursion with recdef

User must (help to) prove termination

(; later)

16

primrec Example

primrec

"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"

17

primrec: The General Case

If τ is a datatype with constructors C1, . . . , Ck, then

f :: · · · ⇒ τ ⇒ τ ′ can be defined by primitive recursion

by:

f x1 . . . (C1 y1,1 . . . y1,n1
) . . . xm = r1

· · ·
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xm = rk

The recursive calls in ri must be structurally smaller,

i.e. of the form f a1 . . . yi,j . . . am.

18

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec

f 0 = ...

f (Suc n) = ...f n ...

19

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:
None ≈ no result

Some x ≈ result of x

20

option Example

consts lookup :: ’k ⇒ (’k×’v)list ⇒ ’v option

primrec

lookup k [] = None

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

21

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒...| y#ys ⇒ ...y ...ys ...)

In general: one case per constructor

Same number of cases as in datatype

No nested patterns (e.g. x# y# zs)

Nested cases are allowed

Needs () in context
22

Case Distinctions

apply (case tac t)

creates k subgoals:

t = Ci x1 . . . xni =⇒ . . .

one for each constructor Ci

23

Demo: Trees

24

Term Rewriting

Term rewriting means . . .

Using a set of equations l = r from left to right

As long as possible (possibly forever!)

Terminology: equation becomes rewrite rule

25

Example

Equations:

0 + n = n (1)
(Suc m) + n = Suc(m + n) (2)

(0 ≤ m) = True (3)
(Suc m ≤ Suc n) = (m ≤ n) (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)

Suc 0 ≤ Suc 0 + x (2)

Suc 0 ≤ Suc(0 + x) (4)

0 ≤ 0 + x (3)

True

26

Rewriting: More Formally

substitution = mapping of variables to terms

• l = r is applicable to term t[s] if there is a substi-

tution σ such that σ(l) = s

– s is an instance of l

• Result: t[σ(r)]

• Also have theorem: t[s] = t[σ(r)]

27

Example

• Equation: 0 + n = n

• Term: a + (0 + (b + c))

• Substitution: σ = {n 7→ b + c}

• Result: a + (b + c)

• Theorem: a + (0 + (b + c)) = a + (b + c)

28

Conditional Rewriting

Rewrite rules can be conditional:

[|P1; . . . ;Pn|] =⇒ l = r

is applicable to term t[s] with substitution σ if:

• σ(l) = s and

• σ(P1), . . . , σ(Pn) are provable (possibly again by rewrit-

ing)

29

Variables

Three kinds of variables in Isabelle:

• bound: ∀x. x = x

• free: x = x

• schematic: ?x =?x

(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: ∀b. ∃y. f ?a y = b

30

Variables

• Logically: free = bound at meta-level

• Operationally:

– free variabes are fixed

– schematic variables are instantiated by substitu-

tions

31

From x to ?x

State lemmas with free variables:

lemma app Nil2 [simp]: "xs @ [] = xs"

...
done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = ?xs

Now usable with arbitrary values for ?xs

Example: rewriting

rev(a @ []) = rev a

using app Nil2 with σ = {?xs 7→ a}
32

Basic Simplification

Goal: 1. [|P1; . . . ; Pm|] =⇒ C

apply (simp add: eq thm1 . . . eq thmn)

Simplify (mostly rewrite) P1; . . . ;Pm and C using

• lemmas with attribute simp

• rules from primrec and datatype

• additional lemmas eq thm1 . . . eq thmn

• assumptions P1; . . . ;Pm

Variations:

• (simp . . . del: . . .) removes simp-lemmas
• add and del are optional

33

