Topics in Automated Deduction (CS 576)

```
Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/
```

Structural Induction on Lists

P xs holds for all lists xs if

- P Nil, and
- for arbitrary a and list, P list implies

```
P (Cons a list)

P ys

P Nil P (Cons y ys)

P xs
```

In Isabelle:

```
[| ?P []; !!a list. ?P list ==> ?P (a # list) |] ==> ?P ?list
```

Proof Method

- Structural Induction
 - Syntax: (induct x)
 - \mathbf{x} must be a free variable in the first subgoal. The type of \mathbf{x} must be a datatype
 - Effect: Generates 1 new subgoal per constructor
 - Type of x determines which induction principle to use

A Recursive Function: List Append

Declaration:

```
consts app :: "'a list \Rightarrow 'a list \Rightarrow 'a list and definition by primitive recursion:
```

primrec

```
app Nil ys = ____
app (Cons x xs) ys = ____app xs ...___
```

One rule per constructor

Recursive calls only applied to constructor arguments Guarantees termination (total function) Demo: Append and Reverse

Introducing New Types

Keywords:

- typedef: Primitive for type definitions; Only real way of introducing a new type with new properties
 More on this later
- typedec1: Pure declaration; New type with no properties (expect that it is non-empty)

Introducing New Types

Keywords:

- types: Abbreviation may be used in constant declarions
- datatype: Defines recursive data-types; solutions to free algebra specificaitons

Basis for primitive recursive function definitions

typedecl

typedecl name

Introduces new "opaque" name without definition

Serves similar role for generic reasoning as polymorphism, but can't be specialized

Example:

typedecl addr — An abstract type of addresses

types

```
types \langle tyvars \rangle name = \tau
Introduces an abbreviation \langle tyvars \rangle name for type \tau
Examples:
types
name = string
```

Type abbreviations are expanded immediately after parsing

('a,'b)foo = "'a list * 'b"

Not present in internal representation and Isabelle output

datatype: The Example

```
datatype 'a list = Nil | Cons 'a "'a list"
```

Properties:

ullet Type constructors: Nil :: 'a list Cons :: 'a \Rightarrow 'a list \Rightarrow 'a list

- Distinctness: Nil \neq Cons x xs
- Injectivity:

```
(Cons x xs = Cons y ys) = (x = y \land xs = ys)
```

datatype: The General Case

datatype
$$(\alpha_1, \dots, \alpha_m)\tau = C_1 \tau_{1,1} \dots \tau_{1,n_1}$$
 $\mid \dots \mid$
 $\mid C_k \tau_{k,1} \dots \tau_{k,n_k}$

Type Constructors:

$$C_i :: \tau_{i,1} \Rightarrow \ldots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_m)\tau$$

- Distinctness: $C_i \ x_i \dots x_{i,n_i} \neq C_j \ y_j \dots y_{j,n_j}$ if $i \neq j$
- Injectivity: $(C_i \ x_1 \dots x_{n_i} = C_i \ y_1 \dots y_{n_i}) = (x_1 = y_1 \wedge \dots \wedge x_{n_i} = y_{n_i})$

Distinctness and Injectivity are applied automatically Induction must be applied explicitly

Definitions by Example

```
Declaration: consts
                  lot_size :: "nat * nat"
                  sq : "nat \Rightarrow nat"
Definition:
                defs
                   "lot_size \equiv (62, 103)"
                   sq_def: "sq n \equiv n * n"
Declarations
+ definitions: constdefs
                  lot_size :: "nat * nat"
                  lot\_size\_def: "lot\_size \equiv (62, 103)"
                   sq : "nat \Rightarrow nat"
                  sq_def: "sq n \equiv n * n"
```

Definition Restrictions

constdefs

```
prime :: "nat \Rightarrow bool" "prime p \equiv p<1 \wedge (m dvd p \longrightarrow m = 1 \vee m = p)"
```

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument on lhs!

"prime $p \equiv p<1 \land (\forall m. m dvd p \longrightarrow m = 1 \lor m = p)$ " Note: no recursive definitions with defs or constdefs

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:

apply (unfold sq_def)

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x? Excluded Middle says it must be True or False Reflexivity says it's True How about f x = 0? f x = 1? f x = y? If f/x = y then $\forall y$. f x = y. Then f/x = f x #

! All functions in HOL must be total !

Function Definition in Isabelle/HOL

- Non-recursive definitions with defs/constdefs
 No problem
- Primitive-recursive (over datatypes) with primrec
 Termination proved automatically internally
- Well-founded recursion with recdef
 User must (help to) prove termination
 (→ later)

primrec Example

primrec

```
"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"
```

primrec: The General Case

If τ is a datatype with constructors C_1, \ldots, C_k , then $f::\cdots \Rightarrow \tau \Rightarrow \tau'$ can be defined by *primitive recursion* by:

$$f \ x_1 \dots (C_1 \ y_{1,1} \dots y_{1,n_1}) \dots x_m = r_1$$

 \dots
 $f \ x_1 \dots (C_k \ y_{k,1} \dots y_{k,n_k}) \dots x_m = r_k$

The recursive calls in r_i must be *structurally smaller*, i.e. of the form f $a_1 \dots y_{i,j} \dots a_m$.

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec

```
f 0 = ...

f (Suc n) = ...f n ...
```

Type option

```
datatype 'a option = None | Some 'a
```

Important application:

```
\dots \Rightarrow 'a option \approx partial function:
 None \approx no result
 Some x \approx result of x
```

option Example

```
consts lookup :: 'k \Rightarrow ('k\times'v)list \Rightarrow 'v option
primrec
lookup k [] = None
lookup k (x#xs) =
(if fst x = k then Some(snd x) else lookup k xs)
```

case

Every datatype introduces a case construct, e.g.

```
(case xs of [] \Rightarrow...| y#ys \Rightarrow ...y ...ys ...)
```

In general: one case per constructor Same number of cases as in datatype No nested patterns (e.g. x# y# zs) Nested cases are allowed Needs () in context

Case Distinctions

creates k subgoals:

$$t = C_i \ x_1 \dots x_{n_i} \Longrightarrow \dots$$

one for each constructor C_i

Demo: Trees

Term Rewriting

Term rewriting means . . .

Terminology: equation becomes rewrite rule Using a set of equations l=r from left to right As long as possible (possibly forever!)

Example

Equations:
$$\begin{array}{c} 0+n = n \\ (\operatorname{Suc} m) + n = \operatorname{Suc}(m+n) \end{array} (2) \\ (0 \leq m) = \operatorname{True} \\ (\operatorname{Suc} m \leq \operatorname{Suc} n) = (m \leq n) \end{array} (4)$$

$$\begin{array}{c} 0 + \operatorname{Suc} 0 \leq \operatorname{Suc} 0 + x & \underline{(1)} \\ \operatorname{Suc} 0 \leq \operatorname{Suc} 0 + x & \underline{(2)} \\ \operatorname{Suc} 0 \leq \operatorname{O} + x & \underline{(3)} \\ \end{array}$$
 Rewriting:
$$\begin{array}{c} \operatorname{Suc} 0 \leq \operatorname{Suc}(0+x) & \underline{(4)} \\ 0 \leq 0 + x & \underline{(3)} \\ \end{array}$$

$$\begin{array}{c} \operatorname{True} \end{array}$$

Rewriting: More Formally

substitution = mapping of variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
 - -s is an instance of l
- Result: $t[\sigma(r)]$
- Also have theorem: $t[s] = t[\sigma(r)]$

Example

- Equation: 0 + n = n
- Term: a + (0 + (b + c))
- Substitution: $\sigma = \{n \mapsto b + c\}$
- Result: a + (b + c)
- Theorem: a + (0 + (b + c)) = a + (b + c)

Conditional Rewriting

Rewrite rules can be conditional:

$$[\![P_1;\ldots;P_n]\!] \Longrightarrow l = r$$

is applicable to term t[s] with substitution σ if:

- $\sigma(l) = s$ and
- $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (possibly again by rewriting)

Variables

Three kinds of variables in Isabelle:

- bound: $\forall x. \ x = x$
- free: x = x
- schematic: ?x = ?x("unknown", a.k.a. meta-variables)

Can be mixed in term or formula: $\forall b. \exists y. f ? a y = b$

Variables

- Logically: free = bound at meta-level
- Operationally:
 - free variabes are fixed
 - schematic variables are instantiated by substitutions

From x to ?x

State lemmas with free variables:

```
lemma app_Nil2 [simp]: "xs @ [ ] = xs"
done
After the proof: Isabelle changes xs to ?xs (internally):
                     ?xs @ [ ] = ?xs
Now usable with arbitrary values for ?xs
Example: rewriting
                  rev(a @ [ ]) = rev a
using app_Nil2 with \sigma = \{ \text{?xs} \mapsto \text{a} \}
```

Basic Simplification

```
Goal: 1. [P_1; ...; P_m] \Longrightarrow C

apply (simp add: eq\_thm_1 ... eq\_thm_n)

Simplify (mostly rewrite) P_1; ...; P_m and C using
```

- lemmas with attribute simp
- rules from primrec and datatype
- ullet additional lemmas $eq_thm_1 \ \dots \ eq_thm_n$
- assumptions $P_1; \ldots; P_m$

Variations:

- (simp ...del: ...) removes simp-lemmas
- add and del are optional