
Topics in Automated Deduction
(CS 576)

Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/

1

egunter@cs.uiuc.edu
http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cs.uiuc.edu/class/sp06/cs576/

Theory = Module

Syntax:

theory MyTh = ImpTh1+ . . . +ImpThn:

(declarations, definitions, theorems, proofs, . . .) end

• MyTh: name of theory being built. Must live in

file MyTh.thy.

• ImpThi: name of imported theories. Importing is

transitive.

2

Contrete Syntax

When writing terms and types in .thy files (or an Is-

abelle shell):

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

" ..." won’t always be shown on slides

3

Proofs

General schema:

lemma name: "goal"

apply (...)

...
done

If the lemma is suitable as a simplification rule:

lemma name[simp]: " ..."

Adds lemma name to future simplifications
4

Meta-logic: Basic Constructs

Implication: =⇒ (==>)

For separating premises and conclusion of theorems /

rules

Equality: ≡ (==)

For definitions

Universal Quantifier: Λ (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae
5

Rule/Goal Notation

[|A1; . . . ;An|] =⇒ B

abbreviates

A1 =⇒ . . . =⇒ An =⇒ B

and means the rule (or potential rule):

A1; . . . ;An

B

; ≈ “and”

Note: A theorem is a rule; a rule is a theorem.
6

The Proof/Goal State

1. Λx1 . . . xm. [|A1; . . . ;An|] =⇒ B

x1 . . . xm Local constants (fixed variables)

A1 . . . An Local assumptions

B Actual (sub)goal

7

Proof Methods

• Simplification and a bit of logic

– Syntax: auto

– Effect: tries to solve as many subgoals as pos-

sible using simplification and basic logical rea-

soning

• More specialized tactics to come

8

Top-down Proofs

sorry

“completes” any proof (by giving up, and accepting

it)

Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!
9

A Recursive datatype

datatype ’a list = Nil | Cons ’a "’a list"

Nil: empty list

Cons x xs: list with head x::’a, tail xs::’a list

A toy list: Cons False (Cons True Nil)

Syntactic sugar: [False, True]

10

Structural Induction on Lists

P xs holds for all lists xs if

• P Nil, and

• for arbitrary a and list, P list implies

P (Cons a list)

P Nil

P ys
...

P (Cons y ys)

P xs
In Isabelle:

[| ?P []; !!a list. ?P list ==> ?P (a # list) |] ==> ?P ?list

11

A Recursive Function: List Append

Declaration:

consts app :: "’a list ⇒ ’a list ⇒ ’a list

and definition by primitive recursion:

primrec

app Nil ys =

app (Cons x xs) ys = app xs ...

One rule per constructor

Recursive calls only applied to constructor arguments

Guarantees termination (total function)
12

Proof Method

• Structural Induction

– Syntax: (induct x)

x must be a free variable in the first subgoal

The type of x must be a datatype

– Effect: Generates 1 new subgoal per construc-

tor

– Type of x determines which induction principle

to use

13

Demo: Append and Reverse

14

Introducing New Types

Keywords:

• typedef: Primitive for type definitions; Only real

way of introducing a new type with new properties

More on this later

• typedecl: Pure declaration; New type with no prop-

erties (expect that it is non-empty)

15

Introducing New Types

Keywords:

• types: Abbreviation - may be used in constant

declarions

• datatype: Defines recursive data-types; solutions

to free algebra specificaitons

Basis for primitive recursive function definitions

16

typedecl

typedecl name

Introduces new “opaque” name without definition

Serves similar role for generic reasoning as polymor-

phism, but can’t be specialized

Example:

typedecl addr — An abstract type of addresses

17

types

types 〈tyvars〉 name = τ

Introduces an abbreviation 〈tyvars〉 name for type τ

Examples:

types

name = string

(’a,’b)foo = "’a list * ’b"

Type abbreviations are expanded immediately af-

ter parsing

Not present in internal representation and Isabelle

output
18

datatype: The Example

datatype ’a list = Nil | Cons ’a "’a list"

Properties:

• Type constructors: Nil :: ’a list

Cons :: ’a ⇒ ’a list ⇒ ’a list

• Distinctness: Nil 6= Cons x xs

• Injectivity:

(Cons x xs = Cons y ys) = (x = y ∧ xs = ys)

19

datatype: The General Case

datatype (α1, . . . , αm)τ = C1 τ1,1 . . . τ1,n1
| ...

| Ck τk,1 . . . τk,nk

• Type Constructors:

Ci :: τi,1 ⇒ . . . ⇒ τi,ni
⇒ (α1, . . . , αm)τ

• Distinctness: Ci xi . . . xi,ni
6= Cj yj . . . yj,nj

if i 6= j

• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) = (x1 =

y1 ∧ . . . ∧ xni = yni)

Distinctness and Injectivity are applied automatically

Induction must be applied explicitly
20

Definitions by Example

Declaration: consts

lot size :: "nat * nat"

sq : "nat ⇒ nat"

Definition: defs

"lot size ≡ (62, 103)"

sq def: "sq n ≡ n * n"

Declarations
+ definitions: constdefs

lot size :: "nat * nat"

lot size def: "lot size ≡ (62, 103)"

sq : "nat ⇒ nat"

sq def: "sq n ≡ n * n"

21

Definition Restrictions

constdefs

prime :: "nat ⇒ bool"

"prime p ≡ p<1 ∧ (m dvd p −→ m = 1 ∨ m = p)"

Not a definition: m free, but not on left

! Every free variable on rhs must occur as argument

on lhs !

"prime p ≡ p<1 ∧ (∀ m. m dvd p −→ m = 1 ∨ m = p)"

Note: no recursive definitions with defs or constdefs
22

Using Definitions

Definitions are not used automatically

Unfolding of definition of sq:

apply (unfold sq def)

23

HOL Functions are Total

Why nontermination can be harmful:

If f x is undefined, is f x = f x?

Excluded Middle says it must be True or False

Reflexivity says it’s True

How about f x = 0? f x = 1? f x = y? If 6f x = y

then ∀y. f x = y. Then 6f x = f x #

! All functions in HOL must be total !

24

Function Definition in Isabelle/HOL

• Non-recursive definitions with defs/constdefs

No problem

• Primitive-recursive (over datatypes) with primrec

Termination proved automatically internally

• Well-founded recursion with recdef

User must (help to) prove termination

(; later)

25

primrec Example

primrec

"app Nil ys = ys"

"app (Cons x xs) ys = Cons x (app xs ys)"

26

primrec: The General Case

If τ is a datatype with constructors C1, . . . , Ck, then

f :: · · · ⇒ τ ⇒ τ ′ can be defined by primitive recursion

by:

f x1 . . . (C1 y1,1 . . . y1,n1
) . . . xm = r1

· · ·
f x1 . . . (Ck yk,1 . . . yk,nk

) . . . xm = rk

The recursive calls in ri must be structurally smaller,

i.e. of the form f a1 . . . yi,j . . . am.

27

nat is a datatype

datatype nat = 0 | Suc nat

Functions on nat are definable by primrec!

primrec

f 0 = ...

f (Suc n) = ...f n ...

28

Type option

datatype ’a option = None | Some ’a

Important application:

. . . ⇒ ’a option ≈ partial function:
None ≈ no result

Some x ≈ result of x

29

option Example

consts lookup :: ’k ⇒ (’k×’v)list ⇒ ’v option

primrec

lookup k [] = None

lookup k (x#xs) =

(if fst x = k then Some(snd x) else lookup k xs)

30

case

Every datatype introduces a case construct, e.g.

(case xs of [] ⇒...| y#ys ⇒ ...y ...ys ...)

In general: one case per constructor

Same number of cases as in datatype

No nested patterns (e.g. x# y# zs)

Nested cases are allowed

Needs () in context
31

Case Distinctions

apply (case tac t)

creates k subgoals:

t = Ci x1 . . . xni =⇒ . . .

one for each constructor Ci

32

