Topics in Automated Deduction (CS 576)

```
Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/
```

Currying

- Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- **Tupled:** $f :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial appliaction f a_1 with a_1 :: τ Moral: Thou shalt curry your functions (most of the time :-)).

Terms: Syntactic Sugar

Some predefined syntactic sugar:

- Infix: +, −, #, @, . . .
- Mixfix: if_then_else_, case_of_, . . .
- Binders: $\forall x.P \ x \ means \ (\forall)(\lambda x.\ P\ x)$

Prefix binds more strongly than infix:

!
$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$
 !

Type bool

Formulae = terms of type bool

```
True::bool
```

False::bool

 $\neg :: bool \Rightarrow bool$

 \land , \lor , ...: bool \Rightarrow bool

if-and-only-if: =

Type nat

```
0::nat \Rightarrow nat \Rightarrow na
```

Overloading

! Numbers and arithmetic operations are overloaded:

```
0, 1, 2, ...:: nat or real (or others)
```

 $+ :: nat \Rightarrow nat \Rightarrow nat$ and

 $+ :: real \Rightarrow real \Rightarrow real$ (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

... unless the context is unambiguous: Suc 0

Type list

- []: empty list
- x # xs: list with first element x ("head")
 and rest xs ("tail")
- Syntactic sugar: $[x_1, \ldots, x_n] \equiv x_1 \# \ldots \# x_n \# [$

Large library:

hd, tl, map, size, filter, set, nth, take, drop, distinct,

Don't reinvent, reuse!

→ HOL/List.thy

Theory = Module

Syntax:

```
theory MyTh = ImpTh_1 + ... + ImpTh_n:
(declarations, definitions, theorems, proofs, ...) end
```

- MyTh: name of theory being built. Must live in file $MyTh.{
 m thy}.$
- ullet $ImpTh_i$: name of imported theories. Importing is transitive.

Proof General

An Isabelle Interface

by David Aspinall

ProofGeneral

Customized version of (x)emacs:

- All of emacs (info: Ctrl-h i)
- Isabelle aware when editing .thy files
- (Optional) Can use mathematical symbols ("x-symbols")

Interaction:

- via mouse / buttons / pull-down menus
- or keybord (for key bindings, see Ctrl-h m)

ProofGeneral Input

Input of math symbols in ProofGeneral

- via menu ("X-Symbol")
- via ascii encoding (similar to LATEX):
 \<and>, \<or>, ...

• via "standard" ascii name: &, |, -->, ...

Symbol Translations

x-symbol	\forall	∃	λ	_ ¬	\land
ascii (1)	\ <forall></forall>	\ <exists></exists>	\ <lambda></lambda>	\ <not></not>	\setminus <and></and>
ascii (2)	ALL	EX	%	\sim	&

x-symbol	\ \	─ →	\Rightarrow	
ascii (1)	, , ,		\ <rightarrow></rightarrow>	
ascii (2)			=>	

(1) is converted to x-xymbol, (2) remains as ascii See Appendix A of text for more complete list Time for a demo of types and terms

A Recursive datatype

```
datatype 'a list = Nil | Cons 'a "'a list"
Nil: empty list
Cons x xs: list with head x::'a, tail xs::'a list
A toy list: Cons False (Cons True Nil)
Syntactic sugar: [False, True]
```

Contrete Syntax

When writing terms and types in .thy files (or an Isabelle shell):

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. 'a

" ... " won't always be shown on slides

Structural Induction on Lists

P xs holds for all lists xs if

- P Nil
- and for arbitrary y and ys, P ys implies P (Cons y ys)

A Recursive Function: List Append

Declaration:

```
consts app :: "'a list \Rightarrow 'a list \Rightarrow 'a list and definition by primitive recursion:
```

primrec

```
app Nil ys = ____
app (Cons x xs) ys = ____app xs ...___
```

One rule per constructor

Recursive calls only applied to constructor arguments Guarantees termination (total function) Demo: Append and Reverse

Proofs

General schema:

```
lemma name: " ..."
apply ( ...)
i
done
```

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: " ..."
```

Adds lemma name to future simplificaitons

Top-down Proofs

sorry

"completes" any proof (by giving up, and accepting it)

Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!