Topics In Automated Deduction
(CS 576)

Elsa L. Gunter
2112 Siebel Center
egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/csb76/

egunter@cs.uiuc.edu
http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cs.uiuc.edu/class/sp06/cs576/

Currying

e Curried: f. .7y =mm=rT

e Tupled: f. Ty Xm=T1

Advantage: partial appliaction f a; with a1 @i 7
Moral: Thou shalt curry your functions (most of the
time :-)).

Terms: Syntactic Sugar

Some predefined syntactic sugar:
o INnfix: 4+, —, #, ©, ...

e Mixfix: if then else , case of , ...

e Binders: Vx.P x means (V)(Axz. P x)

Prefix binds more strongly than infix:

D fx+y=(FxX)+yZ£f (X+vYy)

Type bool

Formulae = terms of type bool

True::bool
False::bool
— 1. bool = bool

A, V, ... bool = bool

if-and-only-if: =

Type nat

O::nat
Suc :: nat = nat

+. * ...::nat = nat = nat

Overloading

I Numbers and arithmetic operations are overloaded:

0, 1, 2, ...:: nat or real (or others)

-+ :: nat = nat = nat and

+ :: real = real = real (and others)
You need type annotations: 1 :: nat, = + (v :: nat)

... unless the context is unambiguous: Suc O

Type list

e [|: empty list

e X # xs: list with first element x (“head”)
and rest xs (“tail")

e Syntactic sugar: [X1,...,Xn] = X1# ... #XnF]]
Large library:

hd, tl, map, size, filter, set, nth, take, drop, distinct,

Don't reinvent, reuse!
~» HOL/List.thy

Theory = Module

Syntax:
theory MyTh = ImpThi+...+Implhp:

(declarations, definitions, theorems, proofs, ...) end

e MyTh: name of theory being built. Must live in
file MyTh.thy.

e ImpTh;: name of imported theories. Importing is

transitive.

Proof General

An Isabelle Interface
by David Aspinall

ProofGeneral

Customized version of (x)emacs:

e All of emacs (info: Ctrl-h i)
e Isabelle aware when editing .thy files

e (Optional) Can use mathematical symbols
(“X-symbols")

Interaction:

e via mouse / buttons / pull-down menus

e or keybord (for key bindings, see Ctrl-h m)

10

ProofGeneral Input

Input of math symbols in ProofGeneral

e via menu (“X-Symbol")

e via ascii encoding (similar to IATEX):

\<and>, \<or>, ...

e VvVia ‘'standard’ ascii name: &, |, —=>, ...

11

Symbol Translations

X-symbol A = A — A
ascii (1) | \<forall> | \<exists> | \<lambda> | \<not> | \<and>
ascii (2) ALL EX A ~ &
X-symbol V — =

ascii (1) || \<or> | \<longrightarrow> | \<Rightarrow>

ascii (2) | -=> =>

(1) is converted to x-xymbol, (2) remains as ascii

See Appendix A of text for more complete list

12

Time for a demo of types and terms

13

A Recursive datatype

datatype ’a list = Nil | Cons ’a "’a list"
Nil: empty list

Cons x xs: list with head x::'a, tail xs::'a list
A toy list: Cons False (Cons True Nil)

Syntactic sugar: [False, True]

14

Contrete Syntax

When writing terms and types in .thy files (or an Is-
abelle shell):

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

" won't always be shown on slides

15

Structural Induction on Lists

P xs holds for all lists xs if

e P Nil

e and for arbitrary y and ys, P ys implies P (Cons y
ys)

P ys

P (Cons y ys)

P xs

16

A Recursive Function: List Append

Declaration:
consts app :: "’a list = ’a list = ’a list
and definition by primitive recursion:

primrec
app Nil ys =
app (Cons x xs) ys = app xs ...

One rule per constructor
Recursive calls only applied to constructor arguments

Guarantees termination (total function)
17

Demo: Append and Reverse

18

Proofs

General schema:

lemma name: " ..."

apply (...)

done
If the lemma is suitable as a simplification rule:
lemma namelsimp]: " ..."

Adds lemma name to future simplificaitons

19

Top-down Proofs

SOrry

“completes” any proof (by giving up, and accepting
it)
Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!
20

