Topics in Automated Deduction (CS 576)

```
Elsa L. Gunter

2112 Siebel Center

egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/cs576/
```

Contact Information

- Office: 2233 Siebel Center
- Office hours: Tuesday 10:00 11:15 Thursday2:00
 - -3:15
- Email: egunter@cs.uiuc.edu

Course Structure

 Text: Isabelle/HOL: A Proof Assistant for Higher-Order Logic

by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel

- Credit:
 - Homework (mostly submitted by email) 35%
 - Project and presentation 65%
- No Final Exam

Some Useful Links

• Website for class:

```
http://www.cs.uiuc.edu/class/sp06/cs576/
```

Website for Isabelle:

```
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
```

• Isabelle mailing list – to join, send mail to:

```
isabelle-users@cl.cam.ac.uk
```

Text

 may be purchased: published by Springer Verlag as LNCS 2283

```
http://www4.in.tum.de/~nipkow/LNCS2283/
```

or may be downloaded locally:

```
http://www.cs.uiuc.edu/class/sp06/cs576/doc/Isabelle-tutorial.pdf
```

or directly for the main Isabelle website:

```
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/Isabelle2004/doc/tutorial.pdf
```

Your Work

• Homework:

- (Mostly) fairly short exercises carried out in Isabelle
- Submitted by email

Project:

- Develop a model of a system in Isabelle
- Prove some substantive properties of model
- Discuss progress weekly in class
- Give a 20 minute presentation of work at end of course

Course Objectives

- To learn to do formal reasoning
- To learn to model complex problems from computer science
- To learn to given fully rigorous proofs of properties

Crude Course Outline

- First Third: Introduction to Isabelle
 - Based on lecture notes by Tobias Nipow and by Larry Paulson
- Second Third: Jointly study a example of modeling and development of properties of model
- Last Third: Individual and small group development of projects
 - Projects may be of your proving, with my approval, or I will assign

Overview of Isabelle/HOL

System Architecture

ProofGeneral	(X)Emacs based interface
Isabelle/HOL	Isabelle instance for HOL
Isabelle	generic theorem prover
Standard ML	implementation language

HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has
 - datatypes
 - recursive functions
 - logical operators $(\land, \lor, \longrightarrow, \forall, \exists, \ldots)$
- HOL is very similar to a functional programming language
- Higher-order = functions are values, too!

Formulae (Approximation)

Syntax (in decreasing priority):

$$form ::= (form) | term = term$$
 $| \neg form | form \land form$
 $| form \lor form | form \longrightarrow form$
 $| \forall x. form | \exists x. form$
and some others

Scope of quantifiers: as for to right as possible

Examples

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A \wedge B = C \equiv A \wedge (B = C)$
- $\forall x. P x \land Q x \equiv \forall x. (P x \land Q x)$
- $\forall x. \exists y. P \times y \land Q \times \equiv \forall x. (\exists y. (P \times y \land Q \times))$

Formulae

Abbreviations:

$$\forall xy. \ P \ x \ y \equiv \forall x. \forall y. \ P \ x \ y \qquad (\forall, \exists, \lambda, \ldots)$$

• Hiding and renaming:

$$\forall x y. (\forall x. P x y) \land Q x y \equiv \forall x_0 y. (\forall x_1.P x_1 y) \land Q x_0 y$$

- Parentheses:
 - \land , \lor , and \longrightarrow associate to the right:

$$A \wedge B \wedge C \equiv A \wedge (B \wedge C)$$

Warning!

Quantifiers have low priority (broad scope) and may need to be parenthesized:

! $\forall x. P x \land Q x \not\equiv (\forall x. Px) \land Q x$!

Types

Syntax:

```
\begin{array}{llll} \tau & ::= & (\tau) \\ & \mid & \text{bool} \mid & \text{nat} \mid & \dots & \text{base types} \\ & \mid & '\text{a} \mid & '\text{b} \mid & \dots & \text{type variables} \\ & \mid & \tau \Rightarrow \tau & \text{total functions (ascii : =>)} \\ & \mid & \tau \times \tau & \text{pairs (ascii : *)} \\ & \mid & \tau \text{ list} & \text{lists} \\ & \mid & \dots & \text{user-defined types} \end{array}
```

Parentheses: $T1 \Rightarrow T2 \Rightarrow T3 \equiv T1 \Rightarrow (T2 \Rightarrow T3)$

Terms: Basic syntax

Syntax:

```
term ::= (term)
c \mid x constant or variable (identifier)
term \ term function application
term \ term function "abstraction"
term \ term lots of syntactic sugar
```

Examples: $f(gx)y h(\lambda x. f(gx))$

Parantheses: $f a_1 a_2 a_3 \equiv ((f a_1) a_2) a_3$

Note: Formulae are terms

λ -calculus in a nutshell

Informal notation: t[x]

• Function application:

f a is the function f called with argument a.

• Function abstraction:

 $\lambda x.t[x]$ is the function with formal parameter x and body/result t[x], i.e. $x \mapsto t[x]$.

λ -calculus in a nutshell

• Computation:

Replace formal parameter by actual value (" β -reduction"): $(\lambda x.t[x])a \leadsto_{\beta} t[a]$

Example: $(\lambda x. \ x+5) \ 3 \leadsto_{\beta} (3+5)$ Isabelle performs β -reduction automatically Isabelle considers $(\lambda x. t[x])a$ and t[a] equivalent

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: au maens t is a well-typed term of type au

Type Inference

- Isabelle automatically computes ("infer") the type of each variable in a term.
- In the presence of *overloaded* functions (functions with multiple, unrelated types) not always possible.
- User can help with type annotations inside the term.
- **Example:** f(x :: nat)

Currying

• Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$

• **Tupled:** $f :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial appliaction f a_1 with a_1 :: τ Moral: Thou shalt curry your functions (most of the time :-)).

Terms: Syntactic Sugar

Some predefined syntactic sugar:

- Infix: +, −, #, @, . . .
- Mixfix: if_then_else_, case_of_, . . .
- Binders: $\forall x.P \ x \ means \ (\forall)(\lambda x.\ P\ x)$

Prefix binds more strongly than infix:

!
$$f x + y \equiv (f x) + y \not\equiv f (x + y)$$
 !

Type bool

Formulae = terms of type bool

```
True::bool
```

False::bool

```
\neg :: bool \Rightarrow bool
```

$$\land$$
, \lor , ...: bool \Rightarrow bool

Type nat

```
0::nat \Rightarrow nat \Rightarrow na
```

Overloading

! Numbers and arithmetic operations are overloaded:

```
0, 1, 2, ...:: nat or real (or others)
```

 $+ :: nat \Rightarrow nat \Rightarrow nat$ and

 $+ :: real \Rightarrow real \Rightarrow real \text{ (and others)}$

You need type annotations: 1 :: nat, x + (y :: nat)

... unless the context is unambiguous: Suc 0

Type list

- []: empty list
- x # xs: list with first element x ("head")
 and rest xs ("tail")
- Syntactic sugar: $[x_1, \ldots, x_n] \equiv x_1 \# \ldots \# x_n \# [$

Large library:

hd, tl, map, size, filter, set, nth, take, drop, distinct,

Don't reinvent, reuse!

→ HOL/List.thy