Topics In Automated Deduction
(CS 576)

Elsa L. Gunter
2112 Siebel Center
egunter@cs.uiuc.edu

http://www.cs.uiuc.edu/class/

sp06/csb76/

egunter@cs.uiuc.edu
http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cs.uiuc.edu/class/sp06/cs576/

Contact Information

e Office: 2233 Siebel Center
e Office hours: Tuesday 10:00 - 11:15 T hursday2:00
— 3:15

e Email: egunter@cs.uiuc.edu

egunter@cs.uiuc.edu

Course Structure

e Text: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic

by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel
e Credit:
— Homework (mostly submitted by email) 35%

— Project and presentation 65%

e No Final Exam

Some Useful Links

e \\Website for class:

http://www.cs.uiuc.edu/class/sp06/cs576/

e \\Website for Isabelle:

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

e Isabelle mailing list — to join, send mail to:

isabelle-users@cl.cam.ac.uk

http://www.cs.uiuc.edu/class/sp06/cs576/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
isabelle-users@cl.cam.ac.uk

Text

e Mmay be purchased: published by Springer Verlag as
LNCS 2283
http://www4.in.tum.de/ " nipkow/LNCS2283/

e OF may be downloaded locally:
http://www.cs.uiuc.edu/class/sp06/cs576/
doc/Isabelle-tutorial.pdf

e Or directly for the main Isabelle website:
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
dist/Isabelle2004/doc/tutorial.pdf

http://www4.in.tum.de/~nipkow/LNCS2283/
http://www.cs.uiuc.edu/class/sp06/cs576/doc/Isabelle-tutorial.pdf
http://www.cs.uiuc.edu/class/sp06/cs576/doc/Isabelle-tutorial.pdf
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/Isabelle2004/doc/tutorial.pdf
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/Isabelle2004/doc/tutorial.pdf

Your Work

Homework:
— (Mostly) fairly short exercises carried out in Is-

abelle
— Submitted by email

Project:

— Develop a model of a system in Isabelle

— Prove some substantive properties of model

— Discuss progress weekly in class

— Give a 20 minute presentation of work at end of

course

Course ODbjectives

e To learn to do formal reasoning

e [0 learn to model complex problems from

computer science

e TO learn to given fully rigorous proofs of
properties

Crude Course Outline

e First Third: Introduction to Isabelle

— Based on lecture notes by Tobias Nipow and by
Larry Paulson

e Second Third: Jointly study a example of modeling
and development of properties of model

e Last Third: Individual and small group develop-
ment of projects
— Projects may be of your proving, with my ap-
proval, or I will assign

Overview of Isabelle/HOL

System Architecture

ProofGeneral (X)Emacs based interface
Isabelle/HOL Isabelle instance for HOL
Isabelle generic theorem prover

Standard ML

iImplementation language

10

HOL

HOL = Higher-Order Logic
HOL = Types + Lambda Calculus + Logic

HOL has

— datatypes
— recursive functions
— logical operators (A, VvV, —, V, 3, ...)

HOL is very similar to a functional programming
language
Higher-order = functions are values, too!

11

Formulae (Approximation)

e Syntax (in decreasing priority):

form = (form) term = term
- form form A form
formV form form — form
V. form dx. form

and some others

e Scope of quantifiers: as for to right as possible

12

Examples

e AANBVC=((-A)AB)VC

e ANB=C=AA(B=0)

e VX. PXANQ x=Wx. (P XA Q X)

e VX.Jdy. PXYAQ X=VXx.(Ay. (P XYAQ X))

13

Formulae

e Abbreviations:
Vxy. P xy=V¥x.Vy. Pxy (V,3, A, ...)
e Hiding and renaming:
VX Y. (VX. PXY)AQ XY =VXg V.(VX1.P X1 Y)AQ Xg ¥

e Parentheses:

— A, V, and — associate to the right:

AABAC=AA(BAC)

- A—B—C=A—(B— Q)
(A —B) — C I

14

warning!

Quantifiers have low priority (broad scope)

and may need to be parenthesized:

I UX. P XAQXZ (WX PX)AQ X |

15

Types

Syntax:
T = (1)
bool | nat | ... base types
a | b | ... type variables
T=T total functions (ascii : =>)
T X T pairs (ascii : *)
T list lists
user-defined types

Parentheses: Tl=T2=T3=T1= (T2= T3)

16

Terms:
Syntax:
term := (term)
c | x
term term
Ax. term

Examples: f (g X) vy

Basic syntax

constant or variable (identifier)

function application
function “abstraction”

lots of syntactic sugar

h (Ax. T (g X))

Parantheses: f a; a» az = ((f a1) a») ajz

Note: Formulae are terms

17

A-calculus In a nutshell

Informal notation: ¢[x]

e Function application:

f a is the function f called with argument a.

e Function abstraction:
Azx.t[x] is the function with formal parameter x and

body/result t[x], i.e. x — t[x].

18

A-calculus In a nutshell

e Computation:
Replace formal parameter by actual value
(“B-reduction”): (Az.t[z])a ~ 3 t[a]

Example: (Az. x +5) 3~3(3+5)
Isabelle performs g-reduction automatically

Isabelle considers (Az.t[x])a and t[a] equivalent

19

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the

right type

Notation: ¢ :: 7 maens t is a well-typed term of type

T

20

Type Inference

e Isabelle automatically computes (“infer”) the type

of each variable in a term.

e In the presence of overloaded functions (functions

with multiple, unrelated types) not always possible.

e User can help with type annotations inside the

term.

e Example: f(x::nat)

21

Currying

e Curried: f. .7y =mm=rT

e Tupled: f. Ty Xm=rT

Advantage: partial appliaction f a; with aq i 7
Moral: Thou shalt curry your functions (most of the
time :-)).

22

Terms: Syntactic Sugar

Some predefined syntactic sugar:
o INnfix: 4+, —, #, ©, ...

e Mixfix: if then else , case of , ...

e Binders: Vx.P x means (V)(Axz. P x)

Prefix binds more strongly than infix:
L fx4+y=({Fx)+y#£f (X+y) !

23

Type bool

Formulae = terms of type bool

True::bool
False::bool
— 1. bool = bool

A, V, ... bool = bool

if-and-only-if: =

Type nat

O::nat
Suc :: nat = nat

+. * ...::nat = nat = nat

25

Overloading

I Numbers and arithmetic operations are overloaded:

0, 1, 2, ...:: nat or real (or others)

-+ :: nat = nat = nat and

+ :: real = real = real (and others)
You need type annotations: 1 :: nat, = + (v :: nat)

... unless the context is unambiguous: Suc O

26

Type list

e [|: empty list

e X # xs: list with first element x (“head”)
and rest xs (“tail")

e Syntactic sugar: [X1,...,Xn] = X1# ... #XnF]]

Large library:
hd, tl, map,size, filter, set, nth, take, drop, distinct,

Don't reinvent, reuse!
~» HOL/List.thy

27

