Introduction to Complexity Theory – CS-28100 Homework 6 – May 21, 2006

Instructor: Ketan Mulmuley Ry-165B

HOMEWORK. Please print your name on each sheet. Please try to make your solutions readable.

This homework is due on Friday, May 26 at the beginning of the class.

- 6.1 For $L \subseteq \Sigma^*$, let $\mathrm{Tally}(L) = \{1^{n(w)} | w \in L\}$, where n(w) indicates the number associated with the word w. Prove that $\mathrm{Tally}(L) \in P$ if and only if $L \in E$.
 - (Part of Homework 5.9 from the book of Homer and Selman)
- 6.2 Let CLIQUE = $\{(G, k)|G$ has a clique of size $k\}$. We know CLIQUE is in NP, but is NP-complete. Show that some infinite subset of CLIQUE belongs to P.
 - (Homework 6.16 from the book of Homer and Selman)
- 6.3 Define MAXCLIQUE \subset CLIQUE as follows: MAXCLIQUE = $\{(G, m) \in \text{CLIQUE} | (\forall k > m)(G, k) \notin \text{CLIQUE} \}$. Show that MAXCLIQUE is in NP.
- 6.4 Show that PRIME = $\{p|p \text{ is prime}\}$ is in NP. Indeed it is shown that PRIME is in P.
- 6.5 Using the previous exercise show that FCTR is in NP. FCTR = $\{(n; k, p_1, \alpha_1, \dots, p_k, \alpha_k) | n = p_1^{\alpha_1} \dots p_k^{\alpha_k}, (\forall i) p_i \in PRIME\}$