
Efficient and Effective Array Bound Checking

THI VIET NGA NGUYEN and FRANÇOIS IRIGOIN
Ecole des Mines de Paris

Array bound checking refers to determining whether all array references in a program are within
their declared ranges. This checking is critical for software verification and validation because
subscripting arrays beyond their declared sizes may produce unexpected results, security holes,
or failures. It is available in most commercial compilers but current implementations are not as
efficient and effective as one may have hoped: (1) the execution times of array bound checked
programs are increased by a factor of up to 5, (2) the compilation times are increased, which is
detrimental to development and debugging, (3) the related error messages do not usually carry
information to locate the faulty references, and (4) the consistency between actual array sizes and
formal array declarations is not often checked.

This article presents two optimization techniques that deal with Points 1, 2, and 3, and a new
algorithm to tackle Point 4, which is not addressed by the current literature. The first optimization
technique is based on the elimination of redundant tests, to provide very accurate information
about faulty references during development and testing phases. The second one is based on the
insertion of unavoidable tests to provide the smallest possible slowdown during the production
phase. The new algorithm ensures the absence of bound violations in every array access in the called
procedure with respect to the array declarations in the calling procedure. Our experiments suggest
that the optimization of array bound checking depends on several factors, not only the percentage
of removed checks, usually considered as the best improvement measuring metrics. The debugging
capability and compile-time and run-time performances of our techniques are better than current
implementations. The execution times of SPEC95 CFP benchmarks with range checking added by
PIPS, our Fortran research compiler, are slightly longer, less than 20%, than that of unchecked
programs. More problems due to functional and data recursion would have to be solved to extend
these results from Fortran to other languages such as C, C++, or Java, but the issues addressed in
this article are nevertheless relevant.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Assertion checkers; D.2.5 [Software Engineering]: Testing and Debugging—Debugging
aids; symbolic execution; D.3.4 [Programming Languages]: Processors—Compilers; optimization

General Terms: Algorithms, Performance, Verification

Additional Key Words and Phrases: Array bound checking, interprocedural analysis

Authors’ addresses: T. V. N. Nguyen (current address): ICPS-LSIIT, Parc d’innovation, Boulevard
Sébastien Brant, BP 10413, F-67412 Illkirch Cedex, France; email: nguyen@icps.u-strasbg.fr; F.
Irigoin, Centre de Recherche en Informatique, Ecole des Mines de Paris, 35 rue Saint Honoré,
77305 Fontainebleau, France; email: irigoin@cri.ensmp.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 0164-0925/05/0500-0527 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005, Pages 527–570.



528 • T. V. N. Nguyen and F. Irigoin

1. INTRODUCTION

Array bound checking refers to determining whether all array references in a
program are within their declared ranges. Such checking is desirable for any
program, regardless of the programming language used, since bound violations
are among the most common programming errors. Subscripting arrays beyond
their declared sizes may produce unexpected results, security holes, or failures.
For the safety of execution, some languages such as Java require that a program
only be allowed to access elements of an array that are part of its defined extent.

Naive implementation of bound checking can be very slow because ev-
ery array access must be guarded by two bound checks per dimension to
assert the legality of the access. This increases the size of the executable
file, the compilation time, and the execution time, although these two bound
checks can be implemented as one unsigned comparison instruction, that is,
if ((unsigned) (ref-low) > up-low) stop. If the reference is smaller than
the lower bound, the unsigned subtraction underflows and creates a very large
number, causing the test to fail. However, the overhead still remains, in part
because other code transformations or optimizations are prevented by these
bound checks [Moreira et al. 2000].

Some compilers solve this problem by providing the user with a compile-
time option to enable or disable the checking. The purpose of this option, as
mentioned by Muchnick [1997], is to allow users to enable checking in the de-
velopment and debugging processes, and then, once all the defects are suppos-
edly found and fixed, to turn it off for the production version. However, bound
checking is just as important for delivered versions of programs as for devel-
opment versions because the production ones may have bugs that were not
even observed during testing phases. Instead of providing a way to turn bound
checking off, what is needed is to optimize it so that it has a minimal overall cost.

But to be efficient and effective, checking array references involve several is-
sues beyond standard array bound checking. Stopping the execution at the first
violation does not support effective debugging because runs can last very long.
Raising a violation when an old idiom, such as the Fortran 66 array pointer-
like declaration A(1), is used is not effective. Not raising a violation when an
array is accessed through a pointer because the size of the formal array A(*),
in Fortran, or A[], in C, is unknown is deceptive. These three issues were re-
vealed by our empirical studies. The first issue is easy to deal with, while the
two other issues require program analysis to determine the allocated sizes of
arrays pointed to. To that end, we developed techniques named array resizing
in Ancourt and Nguyen [2001] which enable array bound checking for arrays
accessed through pointers.

This article contains contributions about the other four more important is-
sues: execution slowdown, compilation time, lack of information about the er-
ror source, and compatibility between call sites and procedure declarations. It
presents two approaches for limiting the number of array bound checks by us-
ing the analyses provided by PIPS, our Fortran research compiler [Irigoin et al.
1991]. The first technique is based on the elimination of redundant tests, to
provide very accurate information about faulty references during development

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 529

and testing phases. The second one is based on the insertion of unavoidable
tests to provide the smallest possible slowdown during the production phase.
Our experiments suggest that the optimization of array bound checking de-
pends on several factors, not only the percentage of removed checks, usually
considered as the best improvement measuring metrics. The number of removed
checks, compile-time and run-time performances, and debugging capability of
our techniques are better than the current commercial implementations and
related work.

We also introduce in this article a new kind of error checking that verifies
whether the declared size of a formal array is consistent with the size of the cor-
responding actual parameter, for languages with the same parameter passing
rules as Fortran. This analysis is apparently only addressed in some Salford
Fortran compilers and the static analyzer forcheck, although this conformance
test is as important as out-of-bound checking.

In addition, a secondary objective of this work is to see if it is possible to per-
form efficient range checking by reusing interprocedural analysis techniques
already implemented in commercial compilers, instead of designing new spe-
cific algorithms. Many routines are written to manipulate arrays of arbitrary
size, but are used in actual programs only on arrays whose sizes are determined
in the main program. So interprocedural analyses that propagate information
through procedure boundaries should allow us to eliminate more unnecessary
bounds checking and may result in significant speedups. Moreover, interpro-
cedural translation helps to prove the absence of array bound violations or to
detect them at either compile-time or run-time.

The article is organized as follows. Section 2 discusses the related work on
optimization of array range checking and explains what is missing in these
results. An overview of PIPS and its existing analyses that are used in the fol-
lowing sections is given in Section 3. Section 4 presents our first array bound
checking approach based on the elimination of redundant tests. Full informa-
tion about the location of bound violation is preserved. Section 5 presents the
second approach, based on the insertion of unavoidable tests. The precise lo-
cation of the violation is lost but the array improperly accessed is still known.
Section 6 describes the actual/formal array size checking. Results obtained with
our intra- and interprocedural techniques are reported and compared to three
commercial compilers in Section 7. Conclusions are given in Section 8.

2. RELATED WORK

The first approach to optimizing array bound checks was developed by
Markstein et al. [1982] and then refined several times by Asuru [1992] and
Gupta [Gupta 1990, 1993], Spezialetti and Gupta [1995], and Kolte and Wolfe
[1995]. They introduced algorithms to reduce the execution overhead of range
checks through the elimination and propagation of bound checks by using data
flow analysis. Their techniques became more and more sophisticated in order to
improve results. In Gupta [1993], a bound check that was identical or subsumed
by other bound checks was suppressed in a local elimination. In a global elimi-
nation, an algorithm first modified bound checks to create additional redundant

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



530 • T. V. N. Nguyen and F. Irigoin

checks and then carried out the elimination of redundant checks by using the
notions of available and very busy checks. These two algorithms used backward
and forward data flow analyses to solve the problems. For the propagation of
checks out of loops, Gupta [1993] identified candidates for propagation which
include invariants, loops with increment or decrement of 1, and variables of
increasing or decreasing values. Then he used check hoisting to move checks
out of loops. However, the published results are not very convincing because of
the small size of his examples and because the optimizations were only applied
by hand.

Kolte and Wolfe [1995] relied on a check implication graph where nodes were
sets of range checks in canonical form and edges denoted implications among
these families. As in Gupta [1993], they also computed the available and antic-
ipatable checks by solving forward and backward data flow problems. To create
more redundant checks, there were five schemes to insert checks at safe and
profitable program points: no-insertion, safe-earliest, latest-not-isolated place-
ment, check-strengthening, and preheader insertion. They used partial redun-
dancy elimination after determining the most efficient places to move bound
checks to.

Their implementation in the Fortran compiler Nascent [Kolte and Wolfe
1995] with different techniques in range check optimization led to experimental
results that showed the necessity of range check optimization and the effective-
ness and cost of these optimizations. However, high percentages, even 99.99%, of
eliminated tests do not always mean faster execution times. This article lacked
comparisons between the execution times of codes with and without optimized
bound checks to show the impact of removed checks. Furthermore, there were
no mentions of bound violations in PerfectClub (mdg, spc77, trfd) and Riceps
benchmarks (linpackd) which are caused by declaring 1 as the last upper bound
of the formal array declarations.

Suzuki and Ishihata [1977] implemented a system that inserted logical asser-
tions before array element accesses and then used theorem proving techniques
to verify the absence of array range violations. Such techniques are often ex-
pensive and are restricted to programs written in a structured manner, that is,
without goto statements.

The abstract interpretation approach proposed by Cousot and Cousot [1976]
and Cousot and Halbwachs [1978] considered array range checking as an ex-
ample of the automated verification of execution properties of programs. As in
Harrison [1977], Welsh [1978], Schwarz et al. [1988], and Rugina and Rinard
[2000], they used static data flow analysis information to prove at compile-time
that an array bound violation cannot occur at run-time and that the test for this
violation is unnecessary. Their algorithms for propagating and combining as-
sertions depended on the different rules they used. Since the algorithms in the
abstract interpretation and the program verification approaches did not per-
form any insertion of checks in the program to create more redundant checks,
they could only take advantage of completely redundant checks. So the run-
time overhead of the partial redundant checks that could not be evaluated at
compile-time still remained. For instance, Rugina and Rinard [2000] proposed
a novel framework for the symbolic bounds analysis that characterized the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 531

regions of memory accessed by statements and procedures. If these regions
fall within array bounds, unnecessary array bounds checks are eliminated.
However, as said in the article, they did not attempt to eliminate partially
redundant checks or move checks to less frequently executed program points.
Earlier in the literature, Harrison [1977] and Welsh [1978] used value range
propagation to eliminate redundant tests and verify the program correctness.
Also present in this approach was the model checking group (Delzanno et al.
[2000]), which uses fix point acceleration techniques to help the automated
verification of programs.

Pointer, string and array access errors in C were also studied in many articles
[Steffen 1992; Hasting and Joyce 1992; Austin et al. 1994; Jones and Kelly 1997;
Patil and Fischer 1997; Necula and Lee 1998; Wagner 2000; Dor et al. 2001;
Kowshik et al. 2002; Evans and Larochelle 2002]. Lightweight static analyses
have been used to detect buffer overflow vulnerabilities, but at the expense of
soundness and completeness [Wagner 2000; Evans and Larochelle 2002]. These
analyzers will sometimes generate false warnings, or even miss real problems.
The overheads of run-time safety checking reported in some research papers
were significant, ranging from 130% to 540% by [Austin et al. 1994], and about
five times by Purify [Hasting and Joyce 1992]. In addition, Purify cannot detect
if we access past the end of an array into the region of the next variable. The
certifying compiler of Necula and Lee [1998] does not succeed in eliminating
bound checks when the size of the formal array in a called procedure is un-
known. Kowshik et al. [2002] introduced a language called Control-C with key
restrictions to ensure that the memory safety of code can be verified entirely
by static checking. However, their assumptions were restrictive, and only suit-
able for a small class of specific purpose languages, that is, for real-time control
systems.

Other articles [Midkiff et al. 1998, Moreira et al. 2000, 2001] described an-
other approach to optimize array reference checking in Java programs. It was
based on code replication. Loop iteration spaces are partitioned into regions
with different access violation characteristics. In unsafe regions, run-time tests
are performed, whereas in other regions they are not necessary because all
array indices are guaranteed to be within bounds. The optimizations differ on
their level of refinement and practicality. These techniques are less complicated
than the abstract interpretation approach while still being effective. However,
they do not use any control-flow analysis to reduce code replication, and the
optimizations here are mainly for Java applications because of its precise
exception semantics. Another approach for Java, based on an extended Static
Single-Assignment graph representation, the Eliminating Array Bound Checks
on Demand by Bodik et al. [2000], can reduce by 45% the number of executed
bound checks for a representative set of Java programs. Aggarwal and Randall
[2001] used related field analysis to remove about 50% array bound checks
that have already optimized by other simple optimizations. Qian, Handren,
and Verbrugge [2002] described a bound check elimination algorithm which
combined three analyses, variable constraint, array field, and rectangular
array analysis, to prove the safety of array references. Java virtual machines
can use this information to avoid emitting bound checks for these references.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



532 • T. V. N. Nguyen and F. Irigoin

Although there are many different techniques for array bound checking opti-
mization, we can partition them into two main approaches. The first approach
puts array bound checks at every array reference and removes a check if it is
redundant [Markstein et al. 1982; Gupta 1990; Asuru 1992; Gupta 1993; Kolte
and Wolfe 1995]. In the second approach, array bound checks are put at places
where it is not possible to prove them useless [Cousot and Cousot 1976; Suzuki
and Ishihata 1977; Harrison 1977; Cousot and Halbwachs 1978; Welsh 1978;
Schwarz et al. 1988; Midkiff et al. 1998; Rugina and Rinard 2000].

The first approach attempts to reduce the dynamic and static numbers of
bound tests and the overhead induced by a test even if it cannot be eliminated.
This is done by determining if a test is subsumed by another test, so that it
can be eliminated. Hoisting range checks out of loops is also applied when it is
possible. The analyses are simple or sophisticated depending on each technique.

In the second approach, by using data flow information, if it is proven that
no array bound violation will occur at run-time in some region of code, tests are
unnecessary for this region. If it cannot be proven that no access violation will
not occur, tests are generated. The number of generated tests is limited; range
checks are put only where there might be bound violations. But the difficulty
of this approach is that the information needed to prove that no violation will
occur may not be available at compile-time. Then tests may remain inside inner
loops.

The amount of information about the array bound violation was never dis-
cussed in the above articles. It was often reduced to a violation occurred with no
information about the array accessed or the statement where the array element
was referenced. Especially with code hoisting, the information cannot always
be preserved.

So both approaches have advantages and drawbacks when comparing the
number of needed transformations and analyses as well as information about
array violation. A goal of our work here is to compare the effectiveness and op-
timization costs of two different algorithms for array bound checking. The first
one is based on test elimination without hoisting, and the second one is based
on optimized test insertion without code replication. The amount of informa-
tion preserved by each approach is also reported. Our two array bound check
optimizers as well as the actual/formal array size checking were implemented
using preexisting analyses in PIPS. They are described in the next section.

3. PIPS OVERVIEW

PIPS, a source-to-source Fortran compiler, consists of several program analyses
passes dealing with call graph computation, data dependences, transformers,
preconditions, use-def chains, convex array regions, and of program transforma-
tions such as loop transformations, constant folding, and dead code elimination.
Each analysis is performed only once on each procedure and produces a sum-
mary result that is later used at call sites. The running example in Figure 1 is
used to illustrate three analyses for transformers, preconditions, and array re-
gions, which are used by our array bound checkers. This example is an excerpt
from an industrial application.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 533

Fig. 1. PIPS running example.

3.1 Transformers

Transformers abstract the effects of statements on program variables. A state-
ment, when executed in a certain state, yields a new state upon termination.
In other words, a statement is a state-to-state mapping and the related trans-
former is a state-to-state relation which includes this function. Transformers
are useful to summarize compound statements and module effects and to per-
form modular analysis.

Semantically, the denotation of a transformer (T ) is a function from the set
of program states to itself:

T : Statement −→ State −→ State.

In general, the semantic functions for exact transformers are not computable,
except for very simple programs, so approximations are needed. In PIPS, convex
polyhedra [Schrijver 1986] are used to approximate sets. A convex polyhedron
over Z is a set of points of Zn defined by P = {x ∈ Zn : A.x ≤ b} where A is
a matrix of Zm × Zn and b a vector of Zm. Each transformer is associated to a
list of variables whose values are modified by the statement, and a predicate
containing affine equalities and inequalities. For efficiency, it is better to keep
track of the few modified variables rather than to add one equation for each of
the many unmodified variables. From a mathematic point of view, all implicit
equations must be taken into account.

Transformers are computed from elementary statements such as continue,
stop, read, write and assignments to compound statements such as conditional
statements, loops, and sequences of statements. They are also propagated in-
terprocedurally through procedure calls under a no recursion assumption. For
array bound checking, only transformers on integer scalar variables are used.

3.1.1 Elementary Statement. Assignments of scalar integer variables with
affine right-hand side expressions are handled exactly in PIPS. If the same
variable appears on both sides, the initial input value and the final output
value appear in the constraints. For instance, T(I){I==I#init+1} models the
effect of the assignment I=I+1. The transformer for a CONTINUE statement
is the identity function T(){}, for a STOP statement is T(){0==-1}, because
the set of states reached after a stop is empty, and for an input statement

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



534 • T. V. N. Nguyen and F. Irigoin

such as READ *,N is T(N){}, which means that only the value of variable N
is modified and that no relationship between its old and its new values is
known.

3.1.2 Conditional Statement. The test condition is approximated by a con-
vex polyhedron which is combined with the transformer of the true branch.
The negation of the test condition also is approximated and added to the trans-
former of the false branch. The transformer of the test statement is the convex
hull of the two above predicates, including the implicit equations for unmodified
variables.

3.1.3 Loop Statement. To handle loops, different kinds of fixed points are
provided to have a flexible choice between efficiency and precision [Irigoin et al.
1991]. For our experiments, we selected a fixed point operator based on dis-
crete derivatives. The loop body transformer is used to find constraints on the
derivatives. Invariants, both equations and inequalities, are directly deduced
from these constraints using a discrete integration.

3.1.4 Sequence of Statements. We assume that each statement in the se-
quence has been associated to its transformer. To combine transformers, rel-
evant input and output variables are renamed as intermediate values, con-
straints are merged, and intermediate values are eliminated by projection.
Transformers are propagated from bottom to top in the abstract syntax tree
of the module.

3.1.5 Interprocedural Transformers. Interprocedural propagation of
transformers is performed by traversing the call graph in the reverse in-
vocation order, which processes a procedure after its callees. The summary
transformer of a procedure is the transformer computed for the procedure
body after projecting its local dynamic variables. Information about formal
parameters, global variables, and static variables is preserved.

When a call to a procedure is encountered, the transformer of the call state-
ment is computed by translating the summary transformer of the called proce-
dure to the frame of the calling procedure. The translation into the scope of the
caller uses global variables information and the bindings between actual and
formal parameters. Equations are built to link formal and actual arguments
when they are affine. These equations are added to the summary transformer
and formal parameters are eliminated.

Transformers of the running example, analyzed interprocedurally, are illus-
trated in Figure 2. Each statement is preceded by its transformer. We have no
transformer information on the statements assigning the elements of array A
in subroutine EXTR, because only scalar variables are handled. With J=L+M-I,
we have T(J){I+J==L+M} which is also the transformer of the sequence of five
statements. The transformer of the DO loop, T(I,J){K+1<=I, L<=I} is always
correct, whether the loop is executed or not. Since K, I, and L are local variables
of EXTR, they are projected from the global transformer of the module and an
identity summary transformer is obtained: no integer scalar variable in the
caller’s scope is modified.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 535

Fig. 2. Transformers of the running example (declarations omitted).

T(K,L,M,NI){K==K#init+1,2K==M+1,L==L#init+1,NI==4} is the transformer
for the sequence of five statements in the IF true branch. The values of vari-
ables are not changed by the false branch. The transformer of the IF statement
is the convex hull of the two branch predicates. Since the values of K and L can
be increased by 1 or not, we have the final transformer of the test statement:
T(K,L,M,NI){L+K#init==L#init+K,L#init<=L,L<=L#init+1}. Additional infor-
mation is retained because of interactions between the true and false trans-
formers and the test condition.

3.2 Preconditions

Precondition analyses try to discover constraints holding among the values of
scalar variables of a program at a control point and at an entry point. For

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



536 • T. V. N. Nguyen and F. Irigoin

any statement, the precondition and the postcondition provide a condition that
holds just before the statement execution for the former and just after for the
latter. The transformer of a statement is applied to the precondition of the state-
ment to obtain the postcondition. This postcondition becomes the precondition
of the following statement in a sequence. We compute the overapproximations
(P) of preconditions (P) which describe the set of program states reached just
before the execution and then can be represented as functions from the set of
statements to the power-set of the set of program states:

P, P : Statement −→ ℘(State).
P(s) ⊆ P(s)

These overapproximated preconditions are computed for scalar variables and
represented as systems of equalities and inequalities like transformers. They
are propagated from the module entry point down to the abstract syntax tree
leaves.

3.2.1 Initial Precondition. The precondition on the entry of a procedure
represents what is known about the variables at the start of any execution.
The initial precondition of a procedure in the intraprocedural analysis is derived
from DATA or PARAMETER statements or, if no information is available, we use the
precondition P(){} which represents all possible program states.

3.2.2 Elementary Statement. The precondition and transformer of a state-
ment are used to compute the postcondition. The variables of the precondition
and the initial values of the transformer are renamed to intermediate variables
in order to merge the precondition’s and the transformer’s constraints. The in-
termediate variables are then projected to obtain the postcondition of the cur-
rent statement. The postcondition for a STOP statement always is P(){0==-1};
for a single input statement READ *,N, is P(N){}.

3.2.3 Conditional Statement. As for transformers, the postcondition of a
test statement is the convex hull of the two postconditions that have been propa-
gated from the precondition of the statement, along the true and false branches.

3.2.4 Loop Statement. The loop body preconditions and the loop postcon-
dition are derived directly using the loop fix point transformer. The accuracy is
improved by detecting if the loop is always, never, or sometimes entered, and
by using the corresponding semantic equations.

3.2.5 Sequence of Statements. The transformer associated to each state-
ment in a sequence, which is computed by a previous phase, is applied to the
precondition of the first statement to obtain the postcondition. This postcon-
dition becomes the precondition of the following statement and we repeat the
process until we reach the postcondition of the last statement.

3.2.6 Interprocedural Preconditions. The interprocedural analysis of pre-
conditions is performed in the invocation order, which processes a procedure
before all its callees. Each time a procedure is invoked, the precondition of the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 537

Fig. 3. Preconditions of the running example (declarations omitted).

current call site is available and is translated into the frame of the called pro-
cedure. The process is similar to transformer translation. Equations between
actual and formal parameters are added. Local variables of the caller are elim-
inated which may cause some information loss. Global variables are renamed
when possible.

The summary precondition of the called procedure is the convex hull of the
translated preconditions of all its call sites. This summary precondition, derived
from the calling contexts, becomes the initial precondition of the procedure.

Figure 3 shows the interprocedural preconditions computed for our run-
ning example. {NC==17} is the initial precondition of MAIN. The test condition
L.GT.1.AND.N .GE.1 is polyhedric and is added to the precondition of the true
branch. This precondition is propagated to the call to EXTR and is translated
to its frame. Since NI and N are not used by EXTR, constraints on them are not
kept in the summary precondition of EXTR. The last precondition in EXTR is the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



538 • T. V. N. Nguyen and F. Irigoin

loop postcondition. We have {K+1<=I, L<=I}, the convex hull of two predicates
obtained when the loop is entered or not: {I==K+1, L<=K} and {I==L, K+1<=L}.

One main advantage of transformer and precondition analyses is that we
can deduce from the program semantics information that is not stated explic-
itly. A close approach was initially developed by Karr [1976] and Cousot and
Halbwachs [1978] that tried to find the affine relationship among variables
in a program state. In fact, transformers and preconditions are powerful sym-
bolic analyses that abstract relations between program states with polyhedra,
and encompass most standard interprocedural constant propagation as well as
interval analyses.

3.3 Array Regions

Array region analysis collects information about array elements used and de-
fined by elementary and compound statements of programs. The region of an
array A of n dimensions at a statement s is a function from the set of states to
the power set of Zn:

R : Statement −→ State −→ ℘(Zn)
s �−→ λσ.({φ = (φ1, . . . , φn) ∈ Zn : r(φ, σ )}).

The semantic function R associates to each statement s and to each pro-
gram state σ a set of array elements described by the region parameters
φ = (φ1, . . . , φn) vector. The variable φi represents the ith dimension index.
r is the relationship existing between φ and the current program state σ .

Since array region analysis was introduced to support dependence analyses
on array structures, two kinds of effects on array elements are used: READ if
they are used and WRITE if they are defined. Unlike transformers and precon-
ditions, both under- and overapproximations are computed for array regions.
A region has the approximation MUST if every element in the region is accessed
with certainty, and the approximation MAY if its elements are simply potentially
accessed. The approximation of a region is EXACT if the region exactly represents
the requested set of array elements.

R, R : Statement −→ State −→ ℘(Zn)
R(s)(σ ) ⊆ R(s)(σ ) ⊆ R(s)(σ ).

Array regions are approximated by using convex polyhedra. The con-
straints link the region parameters that represent the array dimen-
sions to the value of the program integer scalar variables. For example,
WRITE-EXACT-{PHI1==1,PHI2==I} is the written array region of statement
A(1,I) = 5.

Regions are built bottom-up from the deepest nodes to the largest compound
statement nodes in the hierarchical control flow graph. It means that, at each
meet point of a control flow graph, the region information from different control
branches are merged with a convex hull operator. The approximation of regions
is conservative.

3.3.1 Elementary Statement. Each array reference in an assignment is
converted to an elementary region. This region is EXACT if and only if the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 539

subscript expressions are affine functions of the program integer scalar vari-
ables. The effect depends on the reference position in the statement. To save
space, regions of the same array with the same effect are merged by using the
convex hull operator. If the resulting region contains array elements that do
not belong to the original regions, it becomes a MAY region.

3.3.2 Conditional Statement. The array regions of a conditional statement
contain the regions of the test condition, plus the unified regions of the true and
false branches restrained by the test condition evaluation. EXACT regions may
become MAY regions.

3.3.3 Loop Statement. The region corresponding to the body of a loop is a
function of the loop index value. During the propagation of regions, we need to
unify regions corresponding to different, but successive, instances of the loop
body in order to get the summary region of the loop. This union operation is
equivalent to eliminating the loop index i from the system which consists of
the region predicate and the constraint on the iteration space: lb ≤ i ≤ ub. The
operation is exact if the lower and upper bounds of the loop index are affine
functions and if the elimination of loop index is exact [Ancourt and Irigoin
1991; Pugh 1992].

3.3.4 Sequence of Statements. Array regions at different program points
correspond to different program states. To obtain array regions of a sequence of
statements, we must translate array regions associated to different statements
to a reference state, for example, the state preceding the sequence. The trans-
lation uses transformers and consists of adding to the predicate of the region
the constraints abstracting the effects of the statement between the two states.
Then variables of the original state are eliminated. Only variables referring
to the reference state are kept in the resulting polyhedron. The projection of
variables from a convex polyhedron may introduce integer points that do not
belong to the actual projection. In this case, we have a MAY region.

3.3.5 Interprocedural Array Regions. The interprocedural propagation of
READ and WRITE regions is a reverse invocation order traversal on the call graph.
The callees are analyzed first. The summary region of a procedure is computed
by eliminating local effects from the region for the procedure body. At each
call site, the summary regions of the called subroutine are translated from
the callee’s name space into the caller’s name space, and then used during the
intraprocedural analysis of the callers.

Figure 4 illustrates the interprocedural array region computation of the
running example. Each statement is preceded by its regions. Accesses to ar-
ray A occur in the loop body of EXTR. The merged region of READ regions of
A is EXACT while that of WRITE regions is MAY because unreferenced elements
with PHI1 in maybe nonempty range [I+1,2K+L-I-2] are added in the con-
vex hull {I<=PHI1, PHI1+1+I<=2K+L}. These regions are unified over different
iterations, propagated up to have the summary regions of EXTR. After the inter-
procedural translation, the regions before the call site to EXTR are propagated
up, and the READ region becomes MAY because, if the test condition is false, no
array elements are used.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



540 • T. V. N. Nguyen and F. Irigoin

Fig. 4. Array regions of the running example (declarations omitted).

Array access analysis is also studied in Allen et al. [1988], Callahan and
Kennedy [1988], Feautrier [1991], Maydan et al. [1993], Duesterwald et al.
[1993], Tu and Padua [1995], Leservot [1996], and Paek et al. [2002]. There are
different approximations of the set of accessed array elements such as convex
polyhedra [Triolet et al. 1986, Creusillet and Irigoin 1995, 1996], regular sec-
tion descriptors and guarded regular section descriptors [Nguyen et al. 1995;
Gu and Li 2000], symbolic array section [Gupta et al. 2000], and data access de-
scriptors and linear memory access descriptor [Hoeflinger et al. 2001], etc. The
techniques differ in the amount of precision as well as the efficiency on storage
and time. They were compared empirically in Hind et al. [1994]. For example,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 541

in Hall et al. [1995], array element sets were represented by lists of polyhedra
and there was no exact representation, only under- and overapproximations.
In Nguyen et al. [1995] and Gu and Li [2000], array element sets were a list of
RSDs (Regular Section Descriptor) with bounds and step, guarded by predicates
derived from IF conditions. Lin and Padua [1999] proposed an analysis finding
properties of arrays that appear in the subscripts of other arrays (indirection ar-
rays). In Manjunathaiah and Nicole [1997], precision was improved by keeping
the complementary array sections when computing the envelope convex union.
The abstraction choice was a tradeoff between efficiency and precision. Convex
array region analyses are accurate enough to provide useful information for the
array region based bound checking that is described in Section 5.

4. ELIMINATION OF REDUNDANT TESTS

As explained un Section 2, the idea of this approach is to insert systemat-
ically a set of tests at each array reference, then to compute preconditions
for each instrumented statement, and finally to eliminate tests with condi-
tions redundant with respect to their preconditions. Since exact preconditions
cannot be computed (otherwise the halting problem could be solved), we deal
with overapproximated preconditions. Two theorems necessary to show the
correctness of our algorithm are presented first and then our algorithm is
detailed.

4.1 Static Safety and Error

Let VC be the semantic function that represents the array bound violation
condition. It associates to each statement a set of program states that cause
array bound violations.

VC : Statement −→ ℘(State).

As defined, the precondition of a statement and its overapproximation are also
functions from the set of statements to the powerset of the program state set:

P, P : Statement −→ ℘(State).

Let s be a statement, and δ a program state; we have the two following theorems:

THEOREM 4.1.1. For any statement, if the intersection of the overapproxi-
mated precondition and the violation condition is empty then there is no bound
violation caused by this statement; the theorem is equivalent to:

(P(s) ∩ VC(s) = ∅) =⇒ (∀δ ∈ P(s) : δ /∈ VC(s)).

PROOF. The hypotheses P(s) ∩ VC(s) = ∅ imply

∀δ ∈ P(s) : δ /∈ VC(s). (1)

On the other hand, following the definition of the overapproximated precondi-
tion:

∀δ ∈ P(s) : δ ∈ P(s). (2)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



542 • T. V. N. Nguyen and F. Irigoin

From (1) and (2), we have

∀δ ∈ P(s) : δ /∈ VC(s),

which means that any program state reaching s does not belong to the set of
states causing bound violations at s. So there is no bound violation caused by
this statement.

THEOREM 4.1.2. For any statement, if the intersection of the overapproxi-
mated precondition and the negation of the violation condition is empty then
there is surely a bound violation caused by this statement if it is executed; the
theorem is equivalent to

(P(s) ∩ ¬VC(s) = ∅) =⇒ (∀δ ∈ P(s) : δ ∈ VC(s)).

PROOF. The hypotheses P(s) ∩ ¬VC(s) = ∅ imply

∀δ ∈ P(s) : δ ∈ VC(s) (3)

because if δ /∈ VC(s) then δ ∈ ¬VC(s) and δ ∈ P(s) ∩ ¬VC(s), which contradicts
the hypotheses. On the other hand:

∀δ ∈ P(s) : δ ∈ P(s). (4)

From (3) and (4), we have

δ ∈ P(s) =⇒ δ ∈ VC(s),

which means that every program state reaching s is in the set of states that
cause bound violations at s. So there is certainly a bound violation caused by
this statement if it is executed.

4.2 Elimination Algorithm

Our first implementation of a range check optimizer consists of two phases:
bound checks generation and redundant code elimination. Algorithm 4.2.1 de-
scribes the elimination of redundant tests, based on Theorem 4.1.1 and Theorem
4.1.2.

ALGORITHM 4.2.1.
procedure Elimination of Redundant Tests(p)

p : current procedure
begin

for each statement s of p
for each array reference A(s1, . . . , sn) in s

for each dimension i
li = lower bound dimension(A, i)
ui = upper bound dimension(A, i)
insert ”I F (si < li) ST O P message” before s
insert ”I F (si > ui) ST O P message” before s

endfor
endfor

endfor
compute preconditions for each statement of instrumented program p

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 543

for each inserted test statement t with condition e of instrumented p
P = precondition(t)
sc1 = P ∩ {e}
sc2 = P ∩ {¬e}
switch

case infeasible(sc1) : // Theorem 4.1.1
no bound violation, remove t from p

case infeasible(sc2) : // Theorem 4.1.2
bound violation found at compile-time

default : /*undecidable, keep the dynamic check*/
endswitch

endfor
end

In the generation phase, only nontrivial bound checks are generated. Trivial
tests which are always false such as 2<1 or N-1>N are not taken into account.
Each bound check is accompanied with a stop message and, if a bound violation
is detected, the message tells the user in which array, on which dimension, on
which bound, and in which line the subscript is out of range.

When computing the preconditions for the new code, we have two options:
intraprocedural and interprocedural analyses. In the intraprocedural option,
the preconditions at the call sites are not taken into account. The conserva-
tive precondition P(){}, which represents all possible program states, is used
instead of the more precise preconditions deduced from the call sites with the
interprocedural option. Information provided by these preconditions is used to
detect bound violations or eliminate redundant checks. The precondition of a
given statement incorporates information propagated from the test condition of
the bound checking statements inserted before this statement. For each bound
check, we test the feasibility of the system built from it and the precondition.
The feasibility test of a system of constraints is implemented in PIPS by using
the Simplex and Fourier-Motzkin algorithms [Schrijver 1986]. There are three
possibilities:

(1) If the system is infeasible, the bound check is false and is removed from the
test condition (Theorem 4.1.1).

(2) If the bound check is true with respect to the precondition, that is, the
system built from the precondition and the negation of the bound check is
infeasible, a bound violation is detected at compile-time (Theorem 4.1.2).

(3) Otherwise, the bound check is preserved.

Figure 5 shows an excerpt from swim, a weather prediction program in the
SPEC95 CFP benchmark [Dujmovic and Dujmovic 1998] with procedure calls
and array references, which are used to show the effect of interprocedural
analyses.

After the bound check generation, the instrumented code with intraprocedu-
ral and interprocedural preconditions are represented, respectively, in Figure 6
and Figure 8. The preconditions are in comment lines. Some trivial checks
that are never true such as 1.LT.1 and 1.GT.513 are not generated by our
bound checker. The codes after the redundancy elimination for the intrapro-
cedural and interprocedural versions are given in Figure 7 and Figure 9,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



544 • T. V. N. Nguyen and F. Irigoin

Fig. 5. Array bound checking example (excerpted from swim).

respectively. Since there is no difference for module INITAL, it is omitted in
the interprocedural version (Figure 8 and Figure 9). In both versions, the pre-
conditions {1<=I, 1<=J} after entering the loops in SHALOW and INITAL allow
us to remove all lower bound checks. The difference between the intraprocedu-
ral and the interprocedural options of preconditions is that, in Figure 6, after
the call to INITAL, we have an empty postcondition, while in Figure 8 we have
P(M,N) {0<=M, M<=512, 0<=N, N<=512}. This more precise postcondition helps
to eliminate all upper bound checks (I.GT.N1 and J.GT.N2) in the nested loop in
SHALOW (Figure 9). Here we see the strength of the interprocedural precondition
analysis because in the intraprocedural option, bound checks are left inside
loops (Figure 7), as long as code hoisting has not been applied. However, for
the subroutine INITAL, since we have no information about the lower bounds of
variables M and N, lower bound tests remain.

After the redundancy elimination transformation, the number of generated
tests is greatly reduced. PIPS translates Fortran programs into instrumented
Fortran codes with bound checks which are then compiled and executed us-
ing their standard input data sets to detect out-of-bound errors. Experimental
results with the benchmark SPEC95 CFP are given in Section 7.

5. INSERTION OF UNAVOIDABLE TESTS

The basic idea for the second approach is to try to check array overflows on
array region (see Section 3.3) at the highest possible compound statement, the
procedure statement, and then go down into substatements. In this way, array
access checks are hoisted toward the less frequently executed statements. How-
ever, the highest the compound statement the less accurate is the associated
array region. Before presenting the algorithm, we give two theorems necessary
to deal correctly with imprecise information.

5.1 Static Safety and Error

The second array bound checker is based on the convex array region analysis.
As defined in Section 3, the region of an array A of n dimensions at a statement

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 545

Fig. 6. Elimination of redundant tests with intraprocedural preconditions: code with generated
bound checks and preconditions (declarations omitted).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



546 • T. V. N. Nguyen and F. Irigoin

Fig. 7. Elimination of redundant tests with intraprocedural preconditions: code after redundancy
elimination (declarations omitted).

s is a function from the set of states to the powerset of Zn:

R : Statement −→ State −→ ℘(Zn)
s �−→ λσ.({φ = (φ1, . . . , φn) ∈ Zn : r(φ, σ )}).

The violation condition of an array A associates to each statement a set of
program states that cause bound violations of this array:

VC : Statement −→ ℘(State).

By using the region vector φ, VC(s) is defined by the following set:

{σ : ∃φ = (φ1, . . . , φn) ∈ Zn ∃i = 1, n r(φ, σ ) ∧ ((φi < E(li)(σ )) ∨ (φi > E(ui)(σ )))}
where r is the region relationship existing between φ and the current program
state. li and ui, are, respectively, the lower and upper bounds of the dimension
i of array A. E(e) is the function returning the value of an expression e in a
program state σ .

Given a procedure, the declaration of an array can be defined as

DEC : State −→ ℘(Zn)
σ �−→ {φ = (φ1, . . . , φn) ∈ Zn : ∀i = 1, n E(li)(σ ) ≤ φi ≤ E(ui)(σ )}.

We have the two following theorems:

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 547

Fig. 8. Elimination of redundant tests with interprocedural preconditions: code with generated
bound checks and preconditions (declarations omitted).

Fig. 9. Elimination of redundant tests with interprocedural preconditions: code after redundancy
elimination (declarations omitted).

THEOREM 5.1.1. For any statement, if the overapproximated region of an
array is included in the declared dimensions of the array then there is no
bound violation of the array caused by this statement; the theorem is equivalent
to

(∀δ : R(s)(σ ) ⊆ DEC(σ )) =⇒ (VC(s) = ∅).

PROOF. From the hypotheses, for all δ, we have

R(s)(σ ) ⊆ DEC(σ ). (5)

On the other hand, following the definition of the overapproximated region:

R(s)(σ ) ⊆ R(s)(σ ). (6)

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



548 • T. V. N. Nguyen and F. Irigoin

From (5) and (6), we have

∀δ : R(s)(σ ) ⊆ DEC(σ ),

∀δ ∀φ = (φ1, . . . , φn) : r(φ, δ) =⇒ ∀i = 1, n E(li)(σ ) ≤ φi ≤ E(ui)(σ ),

�δ �φ = (φ1, . . . , φn) �i = 1, n : r(φ, δ) ∧ ((φi < E(li)(σ )) ∨ (φi > E(ui)(σ ))),

which leads to VC(s) = ∅. There is no array bound violation caused by s.

THEOREM 5.1.2. For any statement, if the underapproximated region of an
array contains elements which are outside the declared dimensions of the array
then there is certainly a bound violation of the array caused by this statement;
the theorem is equivalent to

(∃δ ∃φ : φ ∈ R(s)(σ ) ∧ φ /∈ DEC(σ )) =⇒ (VC(s) �= ∅).

PROOF. The hypotheses is

∃δ ∃φ : φ ∈ R(s)(σ ) ∧ φ /∈ DEC(σ ). (7)

On the other hand, following the definition of R:

R(s)(σ ) ⊆ R(s)(σ ). (8)

From (7) and (8), we have

∃δ ∃φ : φ ∈ R(s)(σ ) ∧ φ /∈ DEC(σ )

∃δ ∃φ = (φ1, . . . , φn) : r(φ, σ ) ∧ (∃i = 1, n : (φi < E(li)(σ )) ∨ (φi > E(ui)(σ ))),

which leads to VC(s) �= ∅ by definition. There is an array bound violation caused
by this statement.

5.2 Insertion Algorithm

Array regions are built bottom-up, from the elementary statements to the com-
pound statements. Our analysis is a top-down analysis: it begins with the
largest compound statement and, if we have an answer about the ranges of
array element accesses for this statement, we do not have to go down into its
substatements. The analysis can stop here, and bound checks can be inserted at
the very beginning of the module entry and outside loops if we have sufficient
information.

The algorithm consists of two phases: array region computation and insertion
of unavoidable tests. Since transformers are used to model the effects of state
transitions, we have two options to compute array regions: intraprocedural
and interprocedural transformer analyses. The insertion of unavoidable tests
is given by Algorithm 5.2.1, based on Theorems 5.1.1 and 5.1.2.

ALGORITHM 5.2.1.
procedure Insertion of Unavoidable Tests(p)

p : current procedure, decorated with regions at every statement

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 549

begin
s = the compound statement of p
insertion of unavoidable tests at statement(s)

end
procedure insertion of unavoidable tests at statement(s)

for each region R of array A in list of array regions at s
for each bound check e(φi < li or φi > ui) at dimension i of array A

sc1 = R ∩ {e}
sc2 = R ∩ {¬e}
switch

case infeasible(sc1) and (R = MAY or EXACT) : // Theorem 5.1.1
no bound violation of A at s

case infeasible(sc2) and (R = MUST or EXACT) : // Theorem 5.1.2
bound violation of A

case R = EXACT :
sc = project phi variables(sc1)
if the projection is exact then

insert “IF (sc) STOP message” before s
else

for each sub-statement ss of s
insertion of unavoidable tests at statement(ss)

endfor
endif

default:
for each sub-statement ss of s

insertion of unavoidable tests at statement(ss)
endfor

endswitch
endfor

endfor
end

At a compound statement, the read and write regions of each array are used to
test the feasibility of the corresponding array bound checks.

(1) If the region is a MAY or EXACT region included in the declared dimensions of
the array, no bound check is needed for the compound statement and we
stop the process for the array here (Theorem 5.1.1).

(2) If the region is a MUST or EXACT region that contains elements outside the
declared dimensions of the array, there is certainly a bound violation. An
error is detected at compile-time (Theorem 5.1.2).

(3) If the region is an EXACT region and it is possible to project all pseudovari-
ables φ from the system sc1, we have unavoidable tests to insert before the
compound statement. The projection of one variable from a system of con-
straints is a linear programming operation, performed by using the Fourier-
Motzkin method. Each bound check is accompanied with a stop message
that tells the user in which array and on which dimension the subscript is
out of range. The process stops here for the array.

(4) Otherwise, we go down to the substatements of the current compound state-
ment, take the regions of the concerning array, and repeat the above steps.
We have special variables to store information that the lower or upper

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



550 • T. V. N. Nguyen and F. Irigoin

Fig. 10. Example with maybe incorrect regions.

bounds of a dimension of an array have already been checked or not. If
so, we do not have to check for these bounds when going down to the
substatements.

The algorithm terminates because we can always generate bound checks
directly for array references of elementary statements in the control flow
graph.

However, the array region information as well as other analyses in PIPS are
computed under the assumption that the code is correct. In the first approach,
elimination of redundant tests, bound checks are generated before applying
other analyses. Array accesses are guaranteed to be within their bounds and
transformations applied on this instrumented code are always safe. In the sec-
ond approach, the insertion of unavoidable tests is based directly on analyses
computed for the input code. The example in Figure 10 shows how an array
bound violation can lead to an unsafe propagation of array A regions. If every
access to ITAB is within its bounds, the propagated regions of array A before
the DO loop, the assignment J = 11 and READ *,M are correct. Otherwise, when
M ≥ 11, the bound violation in ITAB modifies the value of J and these regions
are not correct any more. There is no overflow in array A but in ITAB.

To cope with this problem, our analysis is based on the insight that it is safe
to propagate an array region from a program point p2 up to an earlier point p1 if
and only if, on every execution path from p1 to p2, any written reference to any
array is inside the declared range. In other words, an array region at point p1 is
safe to be used if and only if all written array references before p2 are checked.
Only written references are taken into account because read references do not
modify memory locations, so they have no effects on the correctness of the array
region computation. The order of array definitions (write order) is used to decide
which array region is checked first. We know that the propagated regions for
array A become false only when an element outside the declared range of ITAB
is written. So if bound checks for ITAB are generated before testing regions of
A, there is no problem. The code with unavoidable tests is shown in Figure 11.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 551

Fig. 11. Example with instrumented code.

This is very similar to code hoisting; we are only allowed to hoist code up
to an earlier point if it is safe to do so. The regions of an array are considered
only when every array whose element assignment occurs at least once before
the concerned array assignment has been already checked. In case the write
order cannot be established for a compound statement, we have to go down to
the substatements of the current statement. For instance, with the sequence of
statements

s1 A(I) = I
s2 B(M,N) = M + N
s3 A(J) = J

not every element of A is always written before elements of B, so we have to go
down and check the array region for A at s1, array region for B, and then for A
at the beginning of sequence s2; s3. Algorithm 5.2.1 is refined by taking into
account this write order.

Figures 12 and 13, and Figures 14 and 15, show the running example with the
insertion of unavoidable tests approach, respectively, for the intraprocedural
and interprocedural transformer options. The result is the same for INITAL, so
it is omitted in the interprocedural option (Figures 14 and 15).

For the procedure INITAL, we have two kinds of regions, READ and WRITE for ar-
ray U, and these regions are treated separately. Lower bound checks remain for
the write region U(PHI1,PHI2)-WRITE-MAY-{PHI1<=513, PHI2<=513} and un-
avoidable tests are inserted before statement U(M+1,N+1) = U(1,1). For the
procedure SHALOW in the intraprocedural version, the cumulated region of the
nested loop allows us to generate an upper bound check that is outside the loop
(Figure 13). Compared to the intraprocedural version of the first approach, this
is a point in favor of the second approach because it may lift tests out of loops
automatically while the former does not.

In the interprocedural version, the interprocedural transformer
{M<=512,N<=512} of INITAL integrated in the cumulated region before the
call to INITAL decides that no check is needed in SHALOW. We have the same
result for both approaches.

The purpose of insertion of unavoidable tests is to generate a minimum
number of bound checks using the available information from array regions.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



552 • T. V. N. Nguyen and F. Irigoin

Fig. 12. Insertion of unavoidable tests with intraprocedural transformers: code with array regions
(declarations omitted).

Bound checks are inserted outside loops and at the beginning of the program.
The other advantage of this algorithm is that it detects the sure bound viola-
tions or indicates that there is certainly no bound violation as early as possible,
thanks to the context given by the top-down analysis of insertion of tests. That
is the goal of the second approach group, as explained in Section 2. Our region-
based algorithm can be parameterized with respect to different abstractions of
array element sets, not only convex polyhedra region. Guarded regions, list of
regions [Gu and Li 2000], or dimension per dimension regions could be used to
improve the computation time of convex regions. Furthermore, we can merge
the read and write regions of the same array, or detect arrays that have the
same declarations and same regions, in order to reduce redundant checks at
the expense of information about errors.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 553

Fig. 13. Insertion of unavoidable tests with intraprocedural transformers: code with unavoidable
tests (declarations omitted).

Fig. 14. Insertion of unavoidable tests with interprocedural transformers: code with array regions
(declarations omitted).

6. ACTUAL/FORMAL ARRAY SIZE CHECKING

Within a program unit, the declaration given for an array provides all the range
information needed for the array in an execution of the program unit. But in
the whole program, when a formal array argument is associated with an actual
array argument, we also have to ensure that there is no bound violation in every

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



554 • T. V. N. Nguyen and F. Irigoin

Fig. 15. Insertion of unavoidable tests with interprocedural transformers: code with unavoidable
tests (declarations omitted).

Fig. 16. Actual/formal array size mismatch example.

array access in the called procedure with respect to the array declarations in
the calling procedure. If not, we cannot know what happens when accessing the
memory beyond the allocated regions. The example in Figure 16 illustrates a
typical array size violation found in a real application.

Although exceeding the size of an actual argument array is strictly forbid-
den in the Fortran standard [ANSI 1983], commercial compilers such as SUN
Workshop F77 version 5.0, SGI MIPSpro F90 version 7.3 and IBM XLF F77
version 7.1.0.0 do not check it. One can argue that this kind of violation is rare
in practice or, conversely, that can be used voluntarily as in Figure 16, but our
implementation found an actual/formal array size mismatch in 1 out of the 10
benchmarks from SPEC95 CFP. Furthermore, the fact that bugs related to in-
terprocedural mismatch are much more difficult to track than standard array
violation is another reason to provide this actual/formal array size checking.
Our algorithm is closely related to Algorithm 4.2.1. Tests of conditions required
by the Fortran standard argument association rules are systematically inserted
before each call site. Over approximations of preconditions are computed and
unnecessary tests are eliminated using these approximations.

6.1 Argument Association Rules

The relationship between the size of the formal and the actual arrays is defined
by the association rules of formal and actual arguments in Section 15.9.3.3 of
the Fortran 77 standard [ANSI 1983]. A formal array can be associated to an
actual array or to an actual array element. In the first case, the size of the
formal argument array must not exceed the size of the actual argument array.
In the second case, the size of the formal argument array must not exceed the
size of the actual argument array plus one minus the subscript value of the
array element. The application of the above conditions is not straightforward

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 555

Table I. Summary of Actual and Formal Arrays

Array name A B
Number of dimensions n m
Lower bounds la1, . . . , lan lb1, . . . , lbm

Upper bounds ua1, . . . , uan ub1, . . . , ubm

Element size ea eb

Dimension size dai = uai − lai + 1 dbi = ubi − lbi + 1

Array size
n∏

i=1

dai

m∏
i=1

dbi

Array element A(sa1, . . . , san) B(sb1, . . . , sbm)

Subscript value 1 +
n∑

i=1


(sai − lai)

i−1∏
j=1

daj


 1 +

m∑
i=1


(sbi − lbi)

i−1∏
j=1

dbj




because of array reshaping (the number and size of dimensions in an actual
argument array declaration are different from those in an associated formal
argument array declaration) and other dubious practices such as actual and
formal arguments of different types. We use the notations in Table I to represent
the relationship between an actual array A and a formal array B. The size of
an array is equal to the number of elements in the array. As Fortran language
allocates arrays in column-major order, the subscript value of an array reference
does not involve the last upper bound. Note that

∏0
j=1 d j = 1.

Definition 6.1.1. A program respects the association rules of formal and
actual arguments if the following conditions are satisfied:

(1) If the whole array A is passed as an actual argument to the formal array
argument B, then

eb.

m∏
i=1

dbi ≤ ea.

n∏
i=1

dai. (9)

(2) If the array element A(sa1, . . . , san) is passed as an actual argument to the
formal array argument B, then

eb.

m∏
i=1

dbi ≤ ea.

(
n∏

i=1

dai + 1 −
(

1 +
n∑

i=1

(
(sai − lai)

i−1∏
j=1

daj

)))
. (10)

THEOREM 6.1.2. If there exists k ∈ N, 1 ≤ k ≤ min(n, m) such that ∀ j = 1, k :
daj = dbj , Equation (9) is equivalent to

eb.

m∏
i=k+1

dbi ≤ ea.

n∏
i=k+1

dai.

Moreover, if A is passed as an array element whose first k subscripts are equal
to their corresponding lower bounds: ∀ j = 1, k : saj = laj , Equation (10) is
equivalent to

eb.

m∏
i=k+1

dbi ≤ ea.

(
n∏

i=k+1

dai −
n∑

i=k+1

(
(sai − lai)

i−1∏
j=k+1

daj

))
.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



556 • T. V. N. Nguyen and F. Irigoin

PROOF. The first equivalence is obtained by dividing both sides by a common
term. The second one is proven. If ∃k ∈ N, 1 ≤ k ≤ min(n, m) such that ∀ j =
1, k : daj = dbj and saj = laj , Equation (10) is equivalent to

eb.

m∏
i=1

dbi ≤ ea.

(
n∏

i=1

dai −
k∑

i=1

(
(sai − lai)

i−1∏
j=1

daj

)
−

n∑
i=k+1

(
(sai − lai)

i−1∏
j=1

daj

))
,

eb.

m∏
i=1

dbi ≤ ea.

(
n∏

i=1

dai −
n∑

i=k+1

(
(sai − lai)

i−1∏
j=1

daj

))
(because sai = lai, i = 1, k),

eb.

k∏
i=1

dbi.

m∏
i=k+1

dbi ≤ ea.

(
k∏

i=1

dai.

n∏
i=k+1

dai −
n∑

i=k+1

(
(sai − lai)

k∏
j=1

daj .

i−1∏
j=k+1

daj

))
,

eb.

m∏
i=k+1

dbi ≤ ea.

(
n∏

i=k+1

dai −
n∑

i=k+1

(
(sai − lai)

i−1∏
j=k+1

daj

))
(as dai = dbi, i = 1, k).

6.2 Actual/Formal Array Size Checking Algorithm

Our analysis traverses the call graph in the invocation order. By using Theorem
6.1.2 and the notation in Table I, the actual/formal array size checking is given
by Algorithm 6.2.1, which consists of two steps: array size check generation and
redundant code elimination, using preconditions.

ALGORITHM 6.2.1.
procedure Actual Formal Array Size Checking(p)

p : current procedure
begin

for each call site c of p
q = corresponding callee(c)
for each actual array argument a of c

b = corresponding formal parameter(a, q)
if b is an array variable then

k := number of equal dimensions(a, b, c, p, q)
s2 := size of formal array(b, k, q)
s′

2 := translate to caller frame(s2, p, c, q)
s1 := size subscript value of actual array(a, k, c, q)
e := ea.s1 < eb.s′

2
insert ”I F (e) STOP message” before c

endif
endfor

endfor
compute preconditions for each statement of instrumented p
for each inserted test statement t with condition e of instrumented p

P = precondition(t)
sc1 = P ∩ {e}
sc2 = P ∩ {¬e}
switch

case infeasible(sc1) :
no size violation, remove t from p

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 557

case infeasible(sc2) :
size violation found at compile-time

default: /*undecidable, keep the dynamic check*/
endswitch

endfor
end

For each formal array parameter at each call site, we generate a test to check
whether the size of the formal array exceeds that of the actual array. We try
to treat dimensions independently by computing k, the number of equal values
among the first dimensions of the actual and formal arrays. When the actual
argument is an array element, k is also the number of first subscripts that are
equal to their corresponding lower bounds. This step facilitates the computation
of array sizes and subscript value expressions. The inequality between the sizes
of the actual and formal arrays can be simplified, and thus the feasibility test
can also be simplified. For instance, in the example in Figure 16, by knowing
N==10, we only have to check 10<M instead of introducing the nonlinear expres-
sion 10*10<N*M. Each bound check is accompanied with a stop message and, if
a bound violation is detected, the message tells the user which call site creates
the violation in which array.

Information about global variables and calling contexts, such as the relation-
ship between actual and formal arguments, is used to improve the translation
process and simplify the inequality characterizing the bound violation. The size
of the formal array can always be translated to the frame of the caller because
the dimension bound expressions are integer constant expressions or contain
only formal parameters. By using preconditions, a test condition is checked fea-
sible or not. If it is false with respect to the precondition, the test is removed
from the program. If it is true, a violation is detected at compile-time. Other-
wise, it is preserved in the program.

7. EXPERIMENTAL RESULTS

We used the SPEC95 CFP benchmark, which contains 10 applications written
in Fortran 77. These are scientific benchmarks with floating point arithmetic,
and many of them have been derived from publicly available application pro-
grams. Each benchmark contains a large number of subscripted references to
arrays. The codes are instrumented and then executed using the standard in-
put data to compute the number of dynamic bound checks. Table II summarizes
relevant information for each benchmark in SPEC95 CFP.

Note that three of them (turb3d, apsi, and fpppp) do not meet the Fortran
standard for array declaration and reference: they have pointer-like formal ar-
ray declarations REAL A(1), although array references in the corresponding
procedures are outside the defined extent of the array. In addition, assumed-
size array declarations REAL A(*) also exist in these three benchmarks and four
other benchmarks. We added proper bounds to the declarations in turb3d, apsi,
and fpppp by applying array resizing [Ancourt and Nguyen 2001] to avoid pre-
mature aborts due to bound violations. This transformation uses the argument
association rules (Section 6.1) to infer new last upper bounds for assumed-
size arrays. Except for the spurious violations caused by the pointer-like

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



558 • T. V. N. Nguyen and F. Irigoin

Table II. SPEC95 CFP: Numbers of Lines, Subroutines, Static Checks
(or Compile-Time Checks) and Dynamic Checks (or Run-Time Checks)

Program Lines Subroutines Static Checks Dynamic Checks
tomcatv 190 1 304 49330000000
swim 429 6 772 69910000000
su2cor 2332 35 4460 48100000000
hydro2d 4292 42 2016 65300000000
mgrid 484 12 1162 176080000000
applu 3868 16 9562 115620000000
turb3d 2101 23 1852 60810000000
apsi 7361 96 7172 39360000000
fpppp 2784 38 2894 29280000000
wave5 7764 105 10546 34040000000

Table III. SPEC95 CFP: Percentage of Removed Compile-Time and Run-Time Checks

Elimination of Redundant Tests Insertion of Unavoidable Tests
Intra Inter Intra Inter

Benchmark Com. Run Com. Run Com. Run Com. Run
tomcatv 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
swim 97.00 97.00 98.45 99.99 84.60 99.99 84.72 99.99
su2cor 94.52 95.20 96.59 97.54 92.12 96.60 94.48 97.66
hydro2d 95.13 93.50 96.13 94.14 90.02 97.70 93.85 99.46
mgrid 91.32 99.60 94.92 99.60 96.61 99.50 97.93 99.66
applu 98.54 96.75 99.62 97.09 96.38 99.80 96.41 99.87
turb3d 92.23 56.18 97.62 65.00 87.03 76.78 98.97 85.57
apsi 97.08 99.20 98.02 99.90 98.70 99.31 99.79 99.99
fpppp 94.12 96.48 94.61 97.02 92.18 97.23 95.82 97.40
wave5 94.52 86.26 94.66 86.86 91.12 89.83 94.01 91.29

declarations, there are no out-of-bound errors with the standard data input
of SPEC95 CFP.

7.1 Array Bound Checking—Removed Checks

Table III shows the percentages of bound checks removed by the two approaches
for array bound checking: elimination of redundant tests and insertion of un-
avoidable tests. For both approaches, we used the intraprocedural option for
transformers and preconditions analyses, which is faster but less accurate,
and the interprocedural option, which is slower but improves the accuracy.
For each combination of approach and option, we measured the percentages of
compile-time and run-time checks removed. The number of eliminated compile-
time checks may be high, but if remaining checks are inside some frequently
executed blocks of code, we do not have much speedup. Run-time checks are
more interesting because they have direct effects on execution time. So to com-
pare between the intraprocedural and interprocedural analysis options, and
between the elimination of redundant tests and insertion of unavoidable tests
approaches, we only used run-time checks results.

With either approach, interprocedural analysis is not an improvement if
the intraprocedural one has already done a good job (tomcatv, mgrid, applu).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 559

Table IV. Debugging Information Provided by Different Compilers

SUN SGI IBM PIPS Elimination PIPS Insertion
Line x x
Array x x x
Dimension x x x
Bound x x

However, with turb3d, the percentage went up from 56.18% to 65% with the
elimination approach and from 76.78% to 85.57% with the insertion approach.
Improvements were also observed for su2cor, swim, hydro2d, and wave5. For
tomcatv, we statically proved that there is no array bound violation, which is
an interesting result for verification purposes.

Comparing the two approaches, we see that the insertion one worked uni-
formly better. We had almost no gain for tomcatv, mgrid, and apsi, but there
were very big gaps between the insertion of unavoidable tests and elimination
of redundant tests for turb3d (about 20.0% with both options), hydro2d (4.20%
with intraprocedural option, 5.32% with interprocedural option), and wave5
(3.57% with intraprocedural option, 4.43% with interprocedural option).

The percentage of removed tests varied for different benchmarks, ap-
proaches, and options. It was not very high for turb3d and wave5, because
they contain many nonlinear expressions and indirections in array references
that are not handled accurately enough by PIPS.

7.2 Array Bound Checking—Debugging Information

The amount of information given when a bound violation occurred differed
among compilers. This information is shown in Table IV by experiments with
three original benchmarks violating the standard for array references: turb3d,
apsi, and fpppp. The experiments were performed with three commercial com-
pilers: SUN Workshop F77 version 5.0, SGI MIPSpro F90 version 7.3, and IBM
XLF F77 version 7.1.0.0. There is no range checking option for the SGI F77 and
GNU G77 compilers and we had to leave them out.

The SUN compile-C option provided the lines of code, the arrays, and the
dimensions associated with the violations. The SGI-C option did not provide
any information, which is particularly clear since the programs did not stop
on the system we used when they reached an out-of-bound trap. The IBM-C
option spotted errors in programs with the Trace/BPT trap(coredump) mes-
sage. Meanwhile, our first array bound checker, elimination of redundant tests,
provided full information about the location of the violations, and the second
one, insertion of unavoidable tests, gave information about the array and the
dimension whose bounds were violated. This information is very important
for the debugging process. Other experiments with large-scale industrial codes
have shown that the additional information such as the module, the lower or
upper bound, and the values of variables given by our first approach is very
useful for tracing the origin of the error. In addition, to detect as many er-
rors as possible in one pass, the STOP messages can be replaced by PRINT mes-
sages. This way, the repeated compilations and executions are avoided at the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



560 • T. V. N. Nguyen and F. Irigoin

Table V. SPEC95 CFP: Speed (Spd; Lines per Second) and Compilation Time (in Minutes and
Seconds); Ultra SPARC IIi 360 MHz; Optimized Code (f77 -fast -xarch=v8plusa -fsimple=

2 -xprefetch)

Elimination Insertion SUN F77
Bench Spd PIPS SUN Total Spd PIPS SUN Total w/o C w. C
tomcatv 55.5 0:02 0:02 0:04 22.2 0:05 0:02 0:07 0:03 0:13
swim 70.7 0:04 0:02 0:06 23.5 0:12 0:05 0:17 0:04 0:20
su2cor 39.4 0:40 0:25 1:05 10.5 2:28 0:33 3:01 0:33 2:23
hydro2d 107.0 0:16 0:19 0:35 39.8 0:43 0:32 1:15 0:32 1:03
mgrid 85.2 0:04 0:07 0:11 8.9 0:38 0:06 0:44 0:08 0:37
applu 74.9 0:33 0:25 0:58 20.2 2:02 0:54 2:56 0:57 11:12
turb3d 86.0 0:15 0:16 0:31 19.8 1:05 0:17 1:22 0:17 0:44
apsi 55.8 1:16 1:02 2:18 9.1 7:42 1:03 8:45 1:16 3:15
fpppp 50.6 0:42 0:45 1:27 8.8 4:01 0:56 4:57 0:54 1:22
wave5 35.2 3:03 1:25 6:28 8.9 12:04 1:50 13:54 2:04 6:20

Note: w/o C = without C; w. c = with C.

expense of some log postprocessing to eliminate multiple occurrences of one
faulty reference.

7.3 Array Bound Checking—Compilation Times

The compilation speeds, expressed in source lines per second, obtained with
PIPS to parse, analyze (transformers, preconditions, array regions), optimize
(array bound check), and generate Fortran code with its own range checking for
SPEC95 CFP are shown in columns 2 and 6 of Table V. The speeds were mea-
sured with interprocedural analyses for transformers and preconditions, which
are slower than the intraprocedural ones. Comment lines are not taken into ac-
count. The 10 benchmarks, with 20644 lines of code and 374 subroutines, were
processed at an average speed of 66.07 lines per second for the elimination of
redundant tests and 17.24 lines per second for the insertion of unavoidable tests,
with an Ultra SPARC IIi 360 MHz. The range check optimization phase only
takes a very small fraction of this compilation time but we have not attempted
to measure it because only the total time matters to the user.

The compilation times (in minutes and seconds) for the insertion of unavoid-
able tests approach were longer, especially for mgrid, apsi, fpppp, and wave5.
That was due to the satisfiability test used in PIPS to compute array regions.
This could be improved by a more sophisticated implementation of array re-
gions. As shown in Table III, the percentage of removed checks of insertion of
unavoidable tests is high enough to pay for this tradeoff.

Since PIPS is a source-to-source compiler, the code generated by PIPS with
its own range checking is then compiled by other compilers. We measured the
compilation times taken by PIPS as a preprocessor and by the SUN Workshop
F77 5.0 compiler for PIPS generated codes. The original codes of SPEC95 CFP
were also compiled with and without the array range checking option of SUN.
The experimental results showed shorter times for the two implementations of
PIPS than for SUN (see the columns Total for elimination of redundant tests
and for insertion of unavoidable tests and the column With C of SUN F77).

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 561

Fig. 17. Execution time: SUN F77 and PIPS; SUN Workshop F77 5.0; Ultra SPARC 360 MHz;
optimized code (f77 -fast -xarch=v8plusa -fsimple=2 -xprefetch).

7.4 Array Bound Checking—Execution Times

The execution times of SPEC95 CFP were measured on different platforms to
see the relationship between the percentage of eliminated checks and the slow-
down. This set of experiments is reported with the optimizing options turned
on, using the SPEC95 CFP measurement guidelines. The code generated by
PIPS with its own range checking using the interprocedural option for trans-
formers and preconditions was compiled by other compilers (SUN, SGI, and
IBM) to generate executable files. For IBM, because an internal compiler error
occurred when compiling the Fortran code with options -O5 and -C together,
we used -O3. In addition, an input/output error occurred for apsi, so we do not
have results for this benchmark on the IBM machine. The execution times of
codes obtained with and without the bound checking option of these compilers
and with the PIPS versions are provided in Figures 17, 18, and 19.

We can see the overheads of range checking in mgrid and applu for SUN
(Figure 17), mgrid and swim for SGI (Figure 18), and tomcatv and turb3d for
IBM (Figure 19). PIPS optimizing array bound checkers work very well for
tomcatv, swim, mgrid, and applu. These benchmarks have more dynamic bound
checks than others, as shown in Table II, column 5. As the range checking
of the IBM compiler was already optimized, the PIPS versions worked better
than IBM in general but worse for the turb3d benchmark. The reason is that
analyses of nonlinear expressions, which occur frequently in this benchmark,
are not implemented yet in PIPS.

Comparing the execution time of the PIPS codes with that of other bound
checked codes, on average, the PIPS elimination of redundant tests was 3.94
times faster than SUN, 1.88 times faster than SGI, but only 1.03 times faster
than IBM, which does not provide error information. The PIPS insertion of un-
avoidable tests was 4.37 times faster than SUN, 2.02 times faster than SGI,
and 1.07 times faster than IBM. The execution times of programs with range
checking added by PIPS were slightly longer than that of the unsafe programs

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



562 • T. V. N. Nguyen and F. Irigoin

Fig. 18. Execution time: SGI F90 and PIPS; SGI MIPSpro F90 7.3; O2 R5000 195 MHz, IRIX 6.3;
Optimized code (f90 -Ofast=ip32 5k).

Fig. 19. Execution time: IBM F77 and PIPS; IBM XL F77 7.1; RS/6000 44P-270 375 MHz 4 CPU,
AIX 4.3; optimized code (f77 -O3 -lmass).

without bound checks. On average, these times for the PIPS elimination of
redundant tests were about 19.29% longer for SUN, 7.05% longer for SGI,
and 16.59% longer for IBM. For the PIPS insertion of unavoidable tests, they
were about 5.33% longer for SUN, 0.61% longer for SGI, and 10.62% longer for
IBM.

7.5 Actual/Formal Array Size Checking

The numbers of compile-time and run-time checks added, as well as the total
compilation time (in minutes and seconds) and the slowdown caused by the
actual/formal array size checking for the SPEC95 CFP benchmarks are shown

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 563

Table VI. SPEC95 CFP: Number of Added Compile-Time and Run-Time Checks, Total
Compilation Time (in Minutes and Seconds) and Execution Slowdown

Benchmark Compile Checks Run Checks Compilation Slowdown
tomcatv 0 0 0:01 0.00%
swim 0 0 0:03 0.00%
su2cor 0 0 0:59 0.00%
hydro2d 0 0 0:21 0.00%
mgrid 24 40151 0:05 0.15%
applu 0 0 0:17 0.00%
turb3d 29 281417 0:42 2.12%
apsi 6 240127 1:25 1.67%
fpppp 2 727917 2:29 0.79%
wave5 34 Bound violation 2:36 Bound violation

in Table VI. Although assumed-size arrays are supposed not to exceed the size of
the corresponding actual arrays, they still raised problems for the actual/formal
array size checking. If the formal array is declared correctly but the actual one
has an assumed-size, we cannot compare them. So we have to apply array
resizing to seven benchmarks in SPEC95 CFP.

By using static analyses, our checking has proved that there was no array size
violation in 5 out of the 10 benchmarks. Other bound checks were added before
some procedure calls in the five remaining benchmarks. We cannot compare
the effectiveness of our approach to some compilers (Salford compilers) that do
this checking, but the cost here was small enough. The maximum slowdown
was only 2.12% for turb3d.

A bound violation was detected in wave5, an electromagnetic particle sim-
ulation program. Figure 20 contains the piece of code that caused a bound
violation for array TMP when passing it as an argument in procedure calls.
The size of array TMP(NXD,NY,2) in subroutine SLV2XY must be less than or
equal to the size of array TMP(NX2,78885/NX2) in subroutine SOLV2Y. This array
was declared as TMP(NX2,*) in the original code, before the array resizing
phase. With the argument association rules, we inferred its new dec-
laration, based on the size of the actual array BX(NC1) in subroutine
FIELD. By using binding information between formal and actual arguments
and preconditions, we had SLV2XY:NXD==SOLV2Y:NX2==FIELD:NX2==FIELD:NX+2
and SLV2XY:NY==SOLV2Y:NY2-2==FIELD:NY2-2==FIELD:NY. So the size of ar-
ray TMP in SLV2XY was translated into the frame of SOLV2Y, from NXD*NY*2
to NX2*(NY2-2)*2. The array size check in the frame of SOLV2Y was
78885.LT.NX2*(NY2 -2)*2. When executing the instrumented code with its
standard input data where the grid size NX==1250 and NY==60, we had that
78885<1252*60*2 was true, so there was a bound violation here.

Because TMP, associated to BX, is accessed outside its declared range by
procedure calls and BY is allocated just after BX in memory, the two arrays
TMP and BY share some memory locations if array size violations are not
checked. So if actual/formal array size checking is omitted, this kind of violation
makes other analyses such as alias analysis impossible and code maintenance
difficult.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



564 • T. V. N. Nguyen and F. Irigoin

Fig. 20. Actual/formal array size mismatch (excerpt from wave5).

8. CONCLUSION

To improve the efficiency and effectiveness of array bound checking, we designed
and experimented two algorithms for array bound checking and one algorithm
for actual/formal array size checking. The number of removed/added bound
checks, the information about violations, and the compilation and the execution
times were measured for the SPEC95 CFP benchmarks with three different
compilers and with our experimental implementations. The results show that
our techniques improved significantly speed and/or information.

The study of Richardson and Ganapathi [1989] suggested that interproce-
dural analyses give little benefit in optimization and are too expensive to be
worthwhile. However, our implementations show that with powerful and effi-
cient interprocedural analysis techniques, more redundant checks are removed
and we can even prove the absence of bound violations in some programs. On
average, the slowdown is divided by 2. Once again, it is still a question of a
tradeoff between speed and accuracy, but in the domain of verification, proving
or checking the correctness of code is the most important criterion.

8.1 Comparison Between Two Array Bound Checking Approaches

The experimental results show the effectiveness and the limited optimization
cost of our two array bound check approaches: elimination of redundant tests
and insertion of unavoidable tests.

The first one puts array bound checks everywhere and then removes the re-
dundant ones. This approach is simple and provides very accurate information
for the debugging. The number of eliminated tests depends on the strength of
data flow analyses, such as predicates over scalar integer variable values, used
to perform the elimination.

The second implementation inserts useful checks directly by using array
region analyses. It produces better results with a higher number of removed
dynamic checks and faster execution times. For a small program like tomcatv,

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 565

the differences between the two approaches are limited, but for large programs
with more than 2000 lines of code, there are clear differences. The maximum
improvement in removed dynamic bound checks was 20.57% for turb3d. The
main advantage of this top-down analysis approach is that it detects the sure
bound violations or indicates that there is certainly no bound violation as soon
as possible.

8.2 Comparison with Commercial Compilers

Within the SUN environment, we measured shorter compilation times using
our two source-to-source array bound checkers followed by F77 than using F77
alone with its -C option. The average compilation time speedups were 3.03 for
elimination of redundant tests and 1.1 for insertion of unavoidable tests. The
PIPS elimination of redundant tests had shorter compilation and execution
times than the SUN compiler while preserving the same diagnostic capabilities.

At run-time, the slowdowns measured for SUN and SGI compilers were large
enough to make improvement easy. Unexpectedly, we obtained mostly speedups
by adding array bound checks of the insertion of unavoidable tests version (see
Figure 18, Columns 1 and 4 for each benchmark). This was not the case with
IBM XLF compiler 7.1.0.0, which nevertheless was not uniformly efficient and
which broke down with an internal error when combining options -C and -O5.
However, our execution times were in the same range as IBM’s, seven times
out of nine slightly better. Furthermore, as the SUN compiler does, our array
bound checkers provide programmers useful and precise information about the
dimension and name of the array experiencing a bound violation, even the line
of code with the first approach, while the IBM compiler only indicates that an
overflow occurred somewhere. As in code hoisting methods, the PIPS insertion
of unavoidable tests propagates bound checks outside loops and into the begin-
ning of the program so the precise location of the violation is lost. But compared
to IBM’s compiler, which is in the same performance range, the array and the
dimension improperly accessed are still known. This shows that a simple time
comparison is not possible since the amount of information produced differs.
Without good diagnostic capability, many hours can be wasted in debugging
the cause of an array bound violation message. It should not be inferred from
Figures 17 and 19 that the SUN compiler is not as efficient as IBM’s.

8.3 Comparison with Previous Research Experiments

Among related work, the article “Elimination of Redundant Array Subscript
Range Checks” [Kolte and Wolfe 1995] contains the most experimental re-
sults. They implemented in their Nascent research compiler different tech-
niques for range checking optimizations based on different check placement
schemes. Their experimental results showed that simple optimizations such as
preheader insertion with loop-limit-substitution of linear checks greatly reduce
the number of checks removed. The set of experiments was 10 Fortran programs
from the Perfect, Riceps, and Mendez benchmarks. However, we could not fully
compare our results with theirs because the authors did not include execution
times. We observe that the percentage of removed checks is not an accurate

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



566 • T. V. N. Nguyen and F. Irigoin

predictor of slowdown. These two numbers are not proportional because they
depend on architectures and compilers. For instance, in our experiments 0.01%
of dynamic checks slowed down the execution of swim by 7.65% (see Table III
and Figure 17). So, to evaluate array bound checking optimization, it would be
necessary to compare the execution times of generated codes. However, that
information was missing in Kolte and Wolfe [1995]. Furthermore, no informa-
tion about the origin of violation was preserved in their approach. Problems re-
lated to pointer-like and assumed-size arrays in Perfect Club and Riceps bench-
marks were not mentioned. Out-of-bound errors occurred in four benchmarks:
mdg, spc77, trfd from PerfectClub, and linpackd from Riceps. These errors were
caused by violating standard declaration of arrays in Fortran and there was no
possibility to obtain comparable results for these programs. Kolte and Wolfe’s
best figures for removed checks were in the very same range as ours, and it is
very interesting to see that specific techniques did not work better than generic
techniques.

8.4 Code Quality

Result analysis showed the importance of code quality. Proper array decla-
rations are needed to avoid out-of-bound errors caused by standard violation.
Assumed-size array declarations prevent a complete range checking, so we used
array resizing to overcome this problem. Furthermore, some benchmarks bene-
fit from more sophisticated techniques or modifications such as cloning, param-
eter checking, scalarization for dealing with indirections, scalarization for loop
bounds, nonunit loop increments, etc. For example, we improved the percent-
age of removed checks in the elimination of redundant tests from 94.14% (see
Table III) to 99.50% for hydro2d by cloning the subroutine ADLEN, which has two
totally different behaviors for two parameter values: “half” and “full” steps. The
execution time on SUN was 10% shorter. The elimination percentage went up to
100% from 97.09% for applu by adding one STOP statement after the parameter
checking that was performed for lower bound tests but not for upper bound test
of read variables (NX,NY,NZ in the main program APPLU). A 5.4% decrease of the
execution time was then measured on SUN. Poor code quality can make static
analysis insufficient; run-time checks remain and run-time failures cannot be
eliminated because unintended behaviors must be taken into account.

Another conclusion is retrieved from experience with industrial codes that
have out-of-bound violations. Programmers sometimes initialize the whole com-
mon block by using only the first array, which causes upper bound violations.
To cope with this style of programming, we developed area bound checking
[Nguyen 2002], which compares the array reference to the size of the corre-
sponding common block, not to the upper bound in the array declaration. So in
fact, a lower bound violation is more likely to be a real bug than an upper one.
It should be noted that our implementations scale up to 200,000 lines of code.

8.5 Improvements and Perspectives

Some analyses for nonlinear expressions or indirection arrays that have a direct
impact on array range checking were not implemented in PIPS, so we did not

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 567

obtain satisfying results for turb3d and wave5 in elimination of redundant
tests.

For the array region-based version, the number of bound checks could be re-
duced by replicating code, as in Midkiff et al. [1998] and Moreira et al. [2000],
when MAY regions give necessary but not sufficient conditions for a bound viola-
tion to occur. However, the code size increase may raise problems.

Actual/formal array size checking is as important as normal array bound
checking because it allows us to detect complicated bugs. We developed an effi-
cient algorithm that guarantees the safety of code. This can be a complementary
phase when doing array range checking for whole programs.

Our implementations suggest that commercial products with automatic
analyses could easily be improved to perform efficient array bound checking
without sacrificing information about the location of the violation. Fewer than
1700 additional lines of C code are sufficient to implement both kinds of check-
ing in PIPS. The execution overhead is small enough to consider the use of
safe versions of programs for production activities. These array bound checkers
could possibly be a source-to-source preprocessor for GNU g77, since it does not
have a range checking option.

Our approaches to optimizing bound checking could also be applied to other
imperative languages for scientific applications that require software verifica-
tion such as C, Ada, Java, etc., but they should be extended to cope with other
language characters such as recursive calls and data structures, pointer arith-
metics, dynamic memory allocation, and heritage. Advanced pointer analysis
must be taken into account in order to make the array region precise, and then
the insertion of unavoidable test approach efficient. We believe that encourag-
ing results can be achieved at least with the elimination of redundant tests
approach for well-behaved C programs, since information can be deduced to
remove unnecessary tests. Additional analysis such as array resizing can be
used to infer array descriptors. All these problems are being currently studied.
The PIPS software and documentation as well as the array bound checking
implementations are available online at http://www.cri.ensmp.fr/pips.

ACKNOWLEDGMENTS

We would like to thank B. Creusillet and F. Coelho for implementing some
key algorithms in PIPS, as well as C. Ancourt, P. Jouvelot, and R. Keryell for
their collaborations. We also wish to give special thanks to S. Algarotti, C.
Mongenet, and R. David for letting us use their IBM and SGI machines. Last,
we would especially like to thank the anonymous reviewers whose comments
have been very helpful in clarifying our contributions and to making the article
more self-contained.

REFERENCES

AGGARWAL, A. AND RANDALL, K. H. 2001. Related field analysis. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation. 214–220.

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.

ALLEN, F., BURKE, M., CHARLES, P., CYTRON, R., AND FERRANTE, J. 1988. An overview of the PTRAN
analysis system for multiprocessing. J. Parall. Distrib. Comput. 5, 617–640.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



568 • T. V. N. Nguyen and F. Irigoin

AMI, T. L., REPS, T., SAGIV, M., AND WILHELM, R. 2000. Putting static analysis to work for veri-
fication: A case study. In Proceedings of the International Symposium on Software Testing and
Analysis. 26–38.

ANCOURT, C. AND IRIGOIN, F. 1991. Scanning polyhedra with DO loops. In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 39–50.

ANCOURT, C. AND NGUYEN, T. V. N. 2001. Array resizing for code debugging, maintenance and reuse.
In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering. 32–37.

ANSI. 1983. Programming Language FORTRAN, ANSI X3.9-1978, ISO 1539-1980. American
National Standard Institute, New York, NY.

ASURU, J. M. 1992. Optimization of array subscript range checks. ACM Lett. Programm. Lang.
Syst. 1, 2 (June), 109–118.

AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. 1994. Efficient detection of all pointer and array access
errors. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 290–301.

BODIK, R., GUPTA, R., AND SARKAR, V. 2000. ABCD: Eliminating array bounds checks on demand.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. 321–333.

CALLAHAN, D. AND KENNEDY, K. 1988. Analysis of interprocedural side effects in a parallel pro-
gramming environment. J. Parall. Distrib. Comput. 5, 517–550.

CHIN, W.-N. AND GOH, E.-K. 1995. A reexamination of ‘Optimization of array subscript range
checks.’ ACM Trans. Programm. Lang. Syst. 17, 2 (March), 217–227.

COUSOT, P. AND COUSOT, R. 1976. Static determination of dynamic properties of programs. In
Proceedings of the Second International Symposium on Programming. 106–130.

COUSOT, P. AND COUSOT, R. 1977. Static determination of dynamic properties of recursive programs.
In Proceedings of the IFIP Conference on Formal Description of Programming Concepts. 237–
277.

COUSOT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among variables of
a program. In Proceedings of the ACM Symposium on Principles of Programming Languages.
84–96.

CREUSILLET, B. AND IRIGOIN, F. 1995. Interprocedural array region analyses. In International Work-
shop on Languages and Compilers for Parallel Computing. Lecture Notes in Computer Science,
vol. 1033. Springer-Verlag, Berlin, Germany, 46–60.

CREUSILLET, B. AND IRIGOIN, F. 1996. Exact vs. approximate array region analyses. In International
Workshop on Languages and Compilers for Parallel Computing. Lecture Notes in Computer
Science, vol. 1239. Springer-Verlag, Berlin, Germany, 86–100.

DELZANNO, G., JUNG, G., AND PODELSKI, A. 2000. Static analysis of array bounds as infinite-state
model checking. Unpublished article.

DOR, N., RODEH, M., AND SAGIV, M. 2001. Cleanness checking of string manipulation in C pro-
grams via integer analysis. In the Static Analysis. Lecture Notes in Computer Science, vol. 2126.
Springer-Verlag, Berlin, Germany, 194–212.

DUESTERWALD, E., GUPTA, R., AND SOFFA, M. L. 1993. A practical data flow framework for array
reference analysis and its application in optimization. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. 68–77.

DUJMOVIC, J. J. AND DUJMOVIC, I. 1998. Evolution and evaluation of SPEC benchmarks. ACM
SIGMETRICS 26, 3, 2–9.

EVANS, D. AND LAROCHELLE, D. 2002. Improving security using extensible lightweight static anal-
ysis. IEEE Softw. 19, 1 (Jan./Feb.), 42–51.

FEAUTRIER, P. 1991. Dataflow analysis of array and scalar references. Int. J. Parall. Pro-
gramm. 20, 1, 23–53.

GU, J. AND LI, Z. 2000. Efficient interprocedural array data-flow analysis for automatic program
parallelization. IEEE Trans. Softw. Eng. 26, 3 (March), 244–261.

GUPTA, M., MUKHOPADHYAY, S., AND SINHA, N. 2000. Automatic parallelization of recursive proce-
dures. Int. J. Parall. Programm. 28, 6, 537–562.

GUPTA, R. 1990. A fresh look at optimizing array bound checking. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation. 272–282.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



Efficient and Effective Array Bound Checking • 569

GUPTA, R. 1993. Optimizing array bound checks using flow analysis. ACM Lett. Programm. Lang.
Syst. 2, 1–4 (March–Dec.), 135–150.

HALL, M., MURPHY, B., AMARASINGHE, S., LIAO, S.-W., AND LAM, M. 1995. Interprocedural analysis for
parallelization. In International Workshop on Languages and Compilers for Parallel Computing.
Lecture Notes in Computer Science, vol. 1033. Springer-Verlag, Berlin, Germany, 61–80.

HARRISON, W. H. 1977. Compiler analysis of the value ranges for variables. IEEE Trans. Softw.
Eng. SE-3, 3 (May), 243–250.

HASTING, R. AND JOYCE, B. 1992. Purify: Fast detection of memory leaks and access errors. In
Proceedings of the Winter USENIX Conference. 125–136.

HIND, M., BURKE, M., CARINI, P., AND MIDKIFF, S. 1994. An empirical study of precise interprocedural
array analysis. Sci. Programm. 3, 3, 255–271.

HOEFLINGER, J. P., PAEK, Y., AND YI, K. 2001. Unified interprocedural parallelism detection. Int. J.
Parall. Programm. 29, 2, 185–215.

IRIGOIN, F., JOUVELOT, P., AND TRIOLET, R. 1991. Semantical interprocedural parallelization: An
overview of the PIPS project. In Proceedings of the International Conference on Supercomputing.
144–151.

JONES, R. W. M. AND KELLY, P. H. J. 1997. Backwards-compatible bounds checking for arrays
and pointers in C programs. In Proceedings of the Third International Workshop on Automated
Debugging.

KARR, M. 1976. Affine relationship among variables of a program. Acta Informatica, 6, 133–151.
KOLTE, P. AND WOLFE, M. 1995. Elimination of redundant array subscript range checks. In Pro-

ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. 270–278.

KOWSHIK, S., DHURJATI, D., AND ADVE, V. 2002. Ensuring code safety without runtime checks for
real-time control systems. In Proceedings of the International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems.

LESERVOT, A. 1996. Analyses interprocédurales du flot des données. Ph.D. dissertation. Université
Paris VI, Paris, France.

LIN, Y. AND PADUA, D. 1999. Demand-driven interprocedural array property analysis. In Interna-
tional Workshop on Languages and Compilers for Parallel Computing. Lecture Notes in Computer
Science, vol. 1863. Springer-Verlag, Berlin, Germany, 303–317.

MANJUNATHAIAH, M. AND NICOLE, D. A. 1997. Precise analysis of array usage in scientific programs.
Sci. Programm. 6, 229–242.

MARKSTEIN, V., COCKE, J., AND MARKSTEIN, P. 1982. Optimization of range checking. ACM SIGPLAN
Not. 17, 6 (June), 114–119.

MAYDAN, D. E., AMARASINGHE, S. P., AND LAM, M. S. 1993. Array data-flow analysis and its use
in array privatization. In Proceedings of the ACM Symposium on Principles of Programming
Languages. 2–15.

MIDKIFF, S. P., MOREIRA, J. E., AND SNIR, M. 1998. Optimizing array reference checking in JAVA
programs. IBM Syst. J. 37, 3, 409–453.

MOREIRA, J. E., MIDKIFF, S. P., AND GUPTA, M. 2000. From flop to megaflops: JAVA for technical
computing. ACM Trans. Programm. Lang. Syst. 22, 2 (March), 265–295.

MOREIRA, J. E., MIDKIFF, S. P., GUPTA, M., ARTIGAS, P. V., WU, P., AND ALMASI, G. 2001. The NINJA
project. Commun. ACM 44, 10 (Oct.), 102–109.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, San Francisco, CA.

NECULA, G. C. AND LEE, P. 1998. The design and implementation of a certifying compiler. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. 333–344.

NGUYEN, T. N., GU, J., AND LI, Z. 1995. An interprocedural parallelizing compiler and its support for
memory hierarchy research. In International Workshop on Languages and Compilers for Parallel
Computing. Lecture Notes in Computer Science, vol. 1033. Springer-Verlag, Berlin, Germany,
96–110.

NGUYEN, T. V. N. 2002. Efficient and effective software verifications for scientific applications
using static analyses and code instrumentation. Ph.D. dissertation. Ecole des Mines de Paris,
Paris, France.

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.



570 • T. V. N. Nguyen and F. Irigoin

PAEK, Y., HOEFLINGER, J., AND PADUA, D. 2002. Efficient and precise array access analysis. ACM
Trans. Programm. Lang. Syst. 24, 1, 65–109.

PATIL, H. AND FISCHER, C. N. 1997. Low-cost, concurrent checking of pointer and array accesses
in C programs. Soft.—Pract. Exper. 27, 1, 87–110.

PUGH, W. 1992. A practical algorithm for exact array dependence analysis. Commun. ACM 35, 8
(Aug.), 102–114.

QIAN, F., HANDREN, L., AND VERBRUGGE, C. 2002. A comprehensive approach to array bounds check
elimination for Java. In Compiler Construction. Lecture Notes in Computer Science, vol. 2304.
Springer-Verlag, Berlin, Germany, 325–341.

RICHARDSON, S. AND GANAPATHI, M. 1989. Interprocedural optimization: Experimental results.
Soft.—Pract. Exper. 19, 2 (Feb.), 149–169.

RUGINA, R. AND RINARD, M. 2000. Symbolic bounds analysis of pointers, array indices, and accessed
memory regions. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. 182–195.

SCHRIJVER, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester,
U.K.

SCHWARZ, B., KIRCHGASSNER, W., AND LANDWEHR, R. 1988. An optimizer for Ada—design, experi-
ences and results. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. 175–184.

SPEZIALETTI, M. AND GUPTA, R. 1995. Loop monotonic statements. IEEE Trans. Soft. Eng. 21, 6
(June), 497–505.

STEFFEN, J. L. 1992. Adding run-time checking to the portable C compiler. Soft.—Pract. Ex-
per. 22, 4 (April), 305–316.

SUZUKI, N. AND ISHIHATA, K. 1977. Implementation of an array bound checker. In Proceedings of
the ACM Symposium on Principles of Programming Languages. 132–143.

TRIOLET, R., FEAUTRIER, P., AND IRIGOIN, F. 1986. Automatic parallelization of Fortran programs in
the presence of procedure calls. In Proceedings of the European Symposium on Programming.

TU, P. AND PADUA, D. A. 1995. Gated SSA-based demand-driven symbolic analysis for parallelizing
compilers. In Proceedings of the International Conference on Supercomputing. 414–423.

WAGNER, D. A. 2000. Static analysis and computer security: New techniques for software assur-
ance. Ph.D. dissertation. Computer Science, University of California, Berkeley, Berkeley, CA.

WELSH, J. 1978. Economic range checks in Pascal. Soft.—Pract. Exper. 8, 85–97.

Received May 2003; revised October 2003; accepted February 2004

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 3, May 2005.


