
CMSC 23000
Autumn 2006

Operating Systems Homework 5
Due November 21

1. Suppose that your virtual memory hardware has the following page table entry format:

typedef struct {
unsigned hi20 : 20; // high 20 bits of page address
unsigned r : 1; // set if read access is allowed
unsigned w : 1; // set if write access is allowed
unsigned valid : 1; // set if page is resident in memory
unsigned unused : 9;

} pte_t;

In this system, a memory access can generate a memory fault for several reasons

(a) the accessed address is not resident (i.e., the valid bit is 0).

(b) A read from a page with a 0 r bit.

(c) A write to a page with a 0 w bit.

Describe how you might implement the NFU (Not Frequently Used) algorithm with aging
using the memory-protection mechanism and the unused bits of the page-table entry. Your
solution should how you deal with each of the above faults, how you pick victim pages, and
any periodic tasks that are required.

Note: you may assume that user programming model does not support read-only or write-only
access to memory.

2. Consider the following simplified in-memory representation of an Unix-style inode:

#define BLOCK_SZB 512 // the size of a disk block in bytes
#define IDS_PER_BLOCK 128 // number of block ids in a block

typedef unsigned int Block_t;

typedef struct {
dev_t dev;
uid_t uid;
gid_t gid;
offset_t length;
Block_t direct[10]; // direct access blocks
Block_t indirect1; // one-level of indirection
Block_t indirect2; // two-levels of indirection
Block_t indirect3; // three-levels of indirection

} INode_t;

(a) How large is the largest file that can be represented using a single inode? Give your
answer in blocks.



(b) Assuming that block IDs are four bytes and that the following function returns a pointer
to the in-memory cache of a disk block,

void *DiskBlock (dev_t dev, Block_t id);

implement the following procedure for mapping a file offset to the block containing it

Block_t OffsetToBlock (INode_t *inode, offset_t off);

2


