
CMSC 23000
Autumn 2006

Operating Systems Homework 4
Due November 14

1. Often data is stored in encoded form on disk (e.g., encrypted or compressed) and is decoded
when it is read in. Your job is to implement a lazy decode mechanism for Linux that decodes
the file in page-sized chunks on demand (i.e., when the in-memory data is referenced). The
interface to encoded file is as follows:

#define PAGE_SZB 4096

typedef int (*decoder_t)(int fd, void *dst, int nbytes);

typedef struct {
offset_t off; // offset of page data in file
size_t szb; // size of page data in bytes

} page_t;

typedef struct {
int fd; // file descriptor for encoded file
decoder_t decodeFn;
void *base; // base address of decoded data; will

// be page aligned
int nPages; // number of pages in the file
page_t *map; // map from page index to file offset

} encoded_file_t;

where the decoder_t type is a function that reads and decodes the file’s data. You should
implement the following function:

void init (encoded_file_t *f);

which will be passed an initialized encoded_file_t structure. Your implementation will
require at least one additional function.

Hint: On a Linux system, read the man pages for the mprotect and sigaction system
calls.



2. Consider the following page-reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6

Fill in the following table with the number of page faults for the given physical memory sizes
and replacement algorithms.

Number of Frames OPT FIFO LRU LFU
3
4
5

Assume that initially there are no resident pages.

2


