CMSC 23000 Operating Systems Homework 4
Autumn 2006 Due November 14

1. Often data is stored in encoded form on disk (e.g., encrypted or compressed) and is decoded
when it is read in. Your job is to implement a lazy decode mechanism for Linux that decodes
the file in page-sized chunks on demand (i.e., when the in-memory data is referenced). The
interface to encoded file is as follows:

##define PAGE_SZB 4096
typedef int (xdecoder_t) (int fd, void xdst, int nbytes);

typedef struct {

offset_t off; // offset of page data in file
size_t szb; // size of page data in bytes
} page_t;

typedef struct {

int fd; // file descriptor for encoded file

decoder_t decodeFn;

void *base; // base address of decoded data; will
// be page aligned

int nPages; // number of pages in the file

page_t *map; // map from page index to file offset

} encoded_file_t;
where the decoder_t type is a function that reads and decodes the file’s data. You should
implement the following function:

void init (encoded_file_t «f);
which will be passed an initialized encoded_file_t structure. Your implementation will
require at least one additional function.

Hint: On a Linux system, read the man pages for the mprotect and sigaction system
calls.

2. Consider the following page-reference string:
1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6

Fill in the following table with the number of page faults for the given physical memory sizes
and replacement algorithms.

Number of Frames | OPT | FIFO | LRU | LFU
3
4
5

Assume that initially there are no resident pages.

