
CMSC 23000
Autumn 2006

Operating Systems Homework 2
Due October 24

The C functions setjmp and longjmp provide a portable way to save and restore machine state.
Assume that you are given the following C types to represent threads:

#include <setjmp.h>

typedef enum { READY, BLOCKED } status_t;

typedef struct {
jmp_buf state;
status_t status;

} *tid_t;

#define NO_TID ((tid_t *)0)

and the following interface to support queues of threads:

typedef ... queue_t;

void queue_init (queue_t *);
void enqueue (queue_t *, tid_t *);
tid_t *dequeue (queue_t *);

extern queue_t *ReadyQ;

The dequeue function returns a nil pointer when the queue is empty. You may assume that the
ready queue (ReadyQ) is never empty. Also assume that you have the following atomic compare
and exchange operation:

bool cmpxchg (void **word, void **key, void *val)
{

if (*word == *key) {

*word = val;
return true;

}
else {

*key = *word;
return false;

}
}

There are two parts to the assignment:

1. Implement reentrant mutex locks with the following interface:

typedef ... mutex_t;
void mutex_init (mutex_t *mu);
void mutex_lock (mutex_t *mu);
void mutex_unlock (mutex_t *mu);



Your solution should include the representation of locks as well as the implementation of the
operations.

2. Add condition variables to your lock implementation with the following interface:

typedef ... cond_t;
void cond_init (cond_t *cv);
void cond_wait (mutex_t *mu, cond_t *cv);
void cond_signal (cond_t *cv);

Your solution should include the representation of condition variables as well as the imple-
mentation of the operations.

2


