
CMSC 23000
Autumn 2006

Operating Systems Homework 1
Due October 10

Software transactional memory is a popular programming abstraction for concurrent systems. The
basic idea is that operations on shared variables are grouped into a transaction that either commits
as a group, if there is no interference with other transactions, or aborts. The following API defines
an STM mechanism that could be used in C programs:

typedef ... stm_var_t;
typedef ... transaction_t;

transaction_t atomic_begin ();
bool_t atomic_end (transaction_t);

void stm_init (stm_var_t *);
void stm_update (transaction_t, stm_var_t *, void *);
void *stm_read (transaction_t, stm_var_t *);

The type stm_var_t is an STM variable that can hold a pointer-sized value. STM variables
can only be read and written inside an atomic transaction, which are identified by the opaque type
transaction_t. The function atomic_begin initiates a transaction and returns the ID of
the transaction and atomic_end terminates the transaction and returns true if it successfully
committed. For example, the following code fragment uses an STM variable to implement a shared
counter.

// shared counter
stm_var_t counter;
...

// atomic increment
bool success = false;
do {

transaction_t t = atomic_begin();
int x = (int)stm_read (t, &counter);
stm_write (t, &counter, (void *)(x+1));

success = atomic_end ();
} while (! success);

Your assignment is to implement the STM API from above using the following operations:1

typedef ... mutex_t;
void mutex_init (mutex_t *);
void mutex_lock (mutex_t *);
void mutex_unlock (mutex_t *);

Hint: use a log to record STM updates and then apply them at the end of the transaction, but lookout
for deadlock!

1These are a simplification of the POSIX thread operations.


