2. [5] Use truth tables to verify the equivalence \(A \lor (A \land B) \equiv A \).
3. [10] Exercise 6.2.8(b) (p. 367)
4. [10] Exercise 6.2.9(d) (p. 368)
5. [10] Exercise 6.2.10(d) (p. 368)
6. [10] Exercise 6.2.11(f) (p. 368)
7. [10] Exercise 6.2.12(f) (p. 368)
8. [40] Write (and test and debug) a program in your favorite language that will evaluate the truth of a WFF given a truth assignment (or interpretation) for its propositional variables. You will need to do the following:
 (a) Define a data structure representing WFFs, including propositional variables. You might, for instance, represent propositional variables as strings, or possibly as numbers (integers, say).
 (b) Define a data structure or other representation for truth assignments. You could, for instance, use an association list data structure consisting of a list or sequence of ordered pairs, where each ordered pair would consist of a propositional variable and its assigned truth value. E.g. the assignment

 \[\{P \mapsto T, Q \mapsto F, R \mapsto T\} \]

 would be represented by the association list (using ML list syntax):

 \[[(P, T), (Q, F), (R, T)] \]

 (c) Define an evaluator that takes as parameters a WFF and a truth assignment, and returns true or false as appropriate.