CMSC35000-1 Introduction to Artificial Intelligence

Winter 2005

Lecture 7: 25/1/05

Lecturer: Partha Niyogi Scribe: Tien Nguyen

7.1 We have discussed so far

- Perceptrons
- MLP
- Kernel base method
- Decision tree
- Generalization Error (Model selection)
- Genetic algorithm
- Bayes net

In the 2 class problem

$$f: X \to Y, Y = \{-1, 1\} \text{ or } \{0, 1\}$$

$$f: X \to R \text{ e.g. } [0, 1]$$

the goal is to find a function to

$$\min (y - f(x))^2$$

7.2 Multiclass supervised learning

7.2.1 Perceptron and MLP

For Perceptrons and MLP, we can do as follows. If we have a problem with k possible class labels, the label is a vector $Y \in \mathbb{R}^k$. Y_i are identified with the corners of a simplex Δ^{k-1} .

$$Y_i = (0, 0, ..., 1, ..., 0)$$

 Y_i are binary vectors which have the value of 1 at the index corresponding to the class of the data point x. The classification function has the form:

$$f:X\to\Delta^{k-1}\in R^k$$

Thus, we can work with this:

$$\min ||y - f(x)||^2$$

To classify a data point, use

$$f(x) = \operatorname{argmax}_{i} f_{i}(x)$$

7.2.2 Kernel-based methods

For Kernel-based methods, we need k functions

$$F = \{ f_i(x_i) : f_i(x) = \sum_{j=1}^n \alpha_j * K(x_j, x_i) \},$$

so one will have to estimate $n \times k$ parameters.

We define a function

$$g: X \to \{1, 2, ..., k\}$$

and

$$y\in\{1,2,...,k\}$$

Then, we define an error function

$$e(y, g(x)) = 1$$
, if $y \neq g(x)$

$$e(y, g(x)) = 0$$
, if $y = g(x)$

We have to compute E(e(y,g(x))) and $\hat{E}(e(y,g(x)))$ which can be combinatorially difficult.

Kernel methods and MLP use the relaxation to

$$f:X\to R$$

and classify a data point by thresholding the output value of the function f:

$$g(x) = 2$$
, if $f(x) > 0$

$$g(x) = 1$$
, if $f(x) < 0$

7.2.3 Decision Trees

For decision tree, we defined the impurity function as follows:

$$g(D,q) = \frac{n_1 I(D_1)}{(n_1 + n_2)} + \frac{n_2 I(D_2)}{(n_1 + n_2)},$$

$$I(D) = p \log(1/p) + (1-p) \log(1/(1-p))$$

To generalize to k classes, we modify the formula for I(D) and use the Shannon's entropy formula:

$$I(D) = \sum_{1}^{k} p_i \log(1/p_i)$$

I(D) is large when p is uniform, and small if probability mass is concentrated on one of the classes.

7.3 Unsupervised learning

Dataset: $x_1, x_2, ..., x_n$ and no label set

Two things we could do in unsupervised learning are:

- Density estimation P(x)
- Clustering: partition data into classes $C_1, C_2, ..., C_k$ such that

$$\bigcup C_i = \{x_1, x_2, ..., x_n\}$$

$$C_i \cap C_j = \emptyset$$

7.3.1 K-means clustering

Pseudo-code

$$x_1, x_2, ..., x_n \in R^N$$

- 1. Pick K points in the space, representing initial group centroids (for example, at random. We will discuss the issue of this initialization later)
- 2. Assign each point to the closest centroid.
- 3. Recompute K centroids as means of the partitions.
- 4. Repeat Steps 2 and 3 until the centroids remain unchanged

7.3.2 Questions

Can you find a configuration on which k-means does not converge?

Consider the following cases, in which k-means

- $1.\,$ always converges but the final configuration is not unique
- 2. cycles on some configurations
- 3. depends on the initialization

4. what happens for co-centric circles

For k-means, we want to minimize over $\{u_1, u_2, ..., u_k\}$

$$\min \sum_{j=1}^{k} e(x_j; \{u_1, u_2, ..., u_k\})$$

where

$$e(x_i; \{u_1, u_2, ..., u_k\}) = \min_i ||u_i - x_i||^2$$

This function is uniquely defined, will k-means find the optimal configuration? Given a partitioning X_1 , $X_2,...,X_k$, and centroids \hat{u}_1 , $\hat{u}_2,...,\hat{u}_k$ after the *ith* iteration, and consider for this iteration

$$\min \sum_{i=1}^{k} e^{i}(x_{j}; \{u_{1}, u_{2}, ..., u_{k}\})$$

is it always the case that

$$\min \sum_{j=1}^{k} e^{i+1}(x_j; \{u_1, u_2, ..., u_k\}) <$$

$$< \min \sum_{j=1}^{k} e^{i}(x_{j}; \{u_{1}, u_{2}, ..., u_{k}\})$$

One can replace e with a differentiable function and do gradient descent. Can you formulate the k-means algorithm for this case?