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7.1 We have discussed so far

e Perceptrons

e MLP

e Kernel base method

e Decision tree

o Generalization Error (Model selection)
e Genetic algorithm

e Bayes net

In the 2 class problem
f:X->YY={-1,1} or {0,1}
f:X—>Reg. [0,1]
the goal is to find a function to

min (y — f(z))?

7.2 Multiclass supervised learning

7.2.1 Perceptron and MLP

For Perceptrons and MLP, we can do as follows. If we have a problem with k& possible class labels, the label
is a vector Y € RF. Y; are identified with the corners of a simplex A*~1,

Y; are binary vectors which have the value of 1 at the index corresponding to the class of the data point x.

The classification function has the form:
f:X o> APt ¢ RF
Thus, we can work with this:
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min ||y — f()|[?

To classify a data point, use
f(z) = argmax; f; (z)

7.2.2 Kernel-based methods
For Kernel-based methods, we need k functions
F={fi): filz) =) a;xK(zj,z:)},
j=1

so one will have to estimate n x k parameters.

We define a function

9: X —> {1,2,...,k}

and

Yy € {17 2) .y k}
Then, we define an error function
e(y,g(x)) =1, if y # g(x)
e(y,9(z)) =0, if y = g(z)
We have to compute E(e(y, g(z))) and E(e(y, g(z))) which can be combinatorially difficult.

Kernel methods and MLP use the relaxation to

f:X—=R
and classify a data point by thresholding the output value of the function f:

g(x) =2, if f(z) >0
g(x) =1, if f(z) <0
7.2.3 Decision Trees

For decision tree, we defined the impurity function as follows:

’I’L]_I(Dl) + TL2[(D2)

9(D,q) = (n1 +1n2) | (n1 +n2)’




where
I(D) = plog(1/p) + (1 — p)log(1/(1 — p))

To generalize to k classes, we modify the formula for (D) and use the Shannon’s entropy formula:
k
I(D) =" p;log(1/pi)
1

I(D) is large when p is uniform, and small if probability mass is concentrated on one of the classes.

7.3 Unsupervised learning

Dataset: z1, 22, ..,2, and no label set

Two things we could do in unsupervised learning are:

e Density estimation P(x)

e Clustering: partition data into classes C4, Cs, .., C such that
U CZ = {.’L‘l, Ly wuny .'En}
Ci n Cj = @

7.3.1 K-means clustering

Pseudo-code
T1, T2,y Ty € RY
1. Pick K points in the space, representing initial group centroids (for example, at random. We will
discuss the issue of this initialization later)
2. Assign each point to the closest centroid.
3. Recompute K centroids as means of the partitions.

4. Repeat Steps 2 and 3 until the centroids remain unchanged

7.3.2 Questions

Can you find a configuration on which k-means does not converge?

Consider the following cases, in which k-means

1. always converges but the final configuration is not unique
2. cycles on some configurations

3. depends on the initialization



4. what happens for co-centric circles
For k-means, we want to minimize over {uy,us, ..., s}
k
min Ze(a:j;{ul,uz,...,uk})
j=1
where
e(@i; {u1, ua, oy up }) = ming||u; — ;]|

This function is uniquely defined, will k-means find the optimal configuration? Given a partitioning X,
Xs,.... X}, and centroids 4, Us,...,Uu), after the ith iteration, and consider for this iteration

k
min Zei(mj;{ul,uz,...,uk})
Jj=1

is it always the case that
k

min Z e (@5 {ur, u, .., ug}) <
i=1

k
< min Z ei(mj; {u1,ua, ..., up})
j=1

One can replace e with a differentiable function and do gradient descent. Can you formulate the k-means
algorithm for this case?



