CMSC35000-1 Introduction to Artificial Intelligence Winter 2005

Lecture 6: 1/20/2005

Lecturer: Partha Niyogi Scribe: George Kuan

Nearest Neighbors Learning Algorithm and Generalization

6.1 Nearest Neighbors Learning Algorithm

We looked at perceptrons, MLPs, Kernel Based Methods, and decision trees. In decision trees, we have
questions and trees that we have to build. If we work with threshold functions, we can get zero error.
Similarly, we can get zero training error using a linear combo of bases using kernel based methods. Using
MLPs we get local minimum but not global minimum. For perceptrons, we saw a proof of convergence.

The simplest classifier is nearest neighbors. We are given a set of (X;,Y;). Let f be the classifier that
when given X, we look at the nearest X; to this X and use that X;’s associated Y;. That is to say, f(X) =Y;
where j = arg min || X; — X||. This classifier function f has zero training error.

There are a number of variations we can make on the nearest neighbors algorithm. We may consider many
different distance functions on different metric spaces. This is a flexibility. Another point of flexibility, is
that we can find the k£ nearest neighbors of X instead of just a single nearest neighbor X; and do a majority
vote to get a Y;. This is a variation on nearest neighbors.

Most of these pattern classification techniques we have covered are actually frameworks on which we can
make quite a few variations by refining some parameters or making slight adjustments to the techniques. In
decision trees, we have to choose impurity function, class of questions, and pruning criteria. In Kernel based
methods, we had to choose the kernel. For MLPs, we had to choose the architecture of network and the
number of nodes in each layers. For nearest neighbors, most crucially, we need to know what is the distance
metric.

A disadvantage of nearest neighbors is that we need to store the k nearest neighbors. But remember, in
the kernel based classifier we have f(z) = sign(3>" ae~l*=ill”). By keeping/summing over all the a’s and
e_”w_‘“”2, we are essentially keeping all the training data around anyway. This sum (for kernel-based
method) is like a weighted distance. For a particular z, if x is close to a particular z; and far from all
the z;’s, then the effect of 2; dominates. In a sense, this is almost a nearest neighbor classifier. So, kernel
based machine is doing a kind of smoothed nearest neighbor. With the a and for z not near a particular z;,
we have something similar to k nearest neighbors. So the kernel based method is a kind of a soft nearest
neighbor algorithm. Nearest neighbor essentially memorizes the training data. Other classifier methods are
genetic algorithms and generative models (Bayes Nets).

6.2 Generalization

Now we will turn our attention to the problem of generalization. This subject is called machine learning,
pattern classification. The goal is to take data D and give a function fp (an empiricially chosen func-
tion/classifier). When we discussed Bayes optimal classifier, we saw that there was a distribution P on

6-1

X x Y from which we can draw (X;,Y;) pairs, we have an error function

e(sz):{ 1 if f(z) #y

0 otherwise

Furthermore, the average or expected error rate is Ele = [e(= Zy € |y —
f(z)|P(z,y)dz where E(e(f,z)) is the expected value function on the error functlon e(f, z). What mini-
mizes this expected value, miny Efe(f, z)] is the Bayes discriminant (function).

We can say that Err(f) = Ez[e(f, z)] (error rate of a classifier). We can further define an empirical error:

Err 126 (f,2:)

1

3

n
i=

Given a collection of functions H, the generic “induction principle” is to pick a class of functions H and do
empirical risk minimization (choose the one function from 7 that minimizes the risk of error). If there
are multiple functions that get error 0, we haven’t described how to choose between the multiple functions.
We'll ignore that for now. Let’s define the empirical error:

fp = avg mingeyErr(f)

fu = avg mingey Err(f)
. Note that the minimum exists but maybe not the minimizer, but that is a technical fact which we will
ignore for now.

What was problematic is that we saw the following inequalities: Err(fy) > Err(fp) by definition but
Err(fp) > Err(fy). This shows how making training error zero doesn’t guarantee a good function. We
would like to ask the question, how can we guarantee that the empiricial risk minimization is a good
principle: when is it a good and when is it bad? As we see from the inequalities, it may or may not be good.
If we are lucky fy; and fp might be close, but they might be very far from each other.

How do we think about this fact? First, let us see what is the relation between Err and Err. If they are the
same, then minimizing one is minimizing the other. First we fix f and see that:

Err =

> elf,)

n
i=1

1
n
where z; ~ P where z; are independent draws from P.

Define e(f, z) to be a random variable 0-1 valued (randomness depends on z). probability Ple(f,z) = 1] =

Err(f) = [e(f,2)dP(z).

Also, we know that the empirical average of this random variable e(f, z) is

NgE

o> elh,)

Err(f) =

i=1

In probability, you saw the law of large numbers. For example #heads "2, Notice that Err follows

this. Let us state the weak law of large numbers formally: Given random variables X;, X5, ... iid random
variables 0-1 valued drawn from probability distribution P (~ P)

1 n
- Z X; — expected value E[X] because E[X;] = p Vi

i=1

1 n
- > X - E[X] < 2e€m

i=1

P l > €
. [Chernoff Bound, Hoeffding Bound] Applying the Chernoff Bound here on Err, we can say (statement

1) for fixed f IP’[|E}r() —Err(f)]] < 2¢~¢’". This means that with large n, the empirical and true error are
within an € of each other. To make this statement, we fixed f and randomized z’s.

Because we want to minimize over a whole class of functions, we need a uniform law of large numbers.
There are consequences here. (Statement 2) for fixed f P[f € H|Err(f) —Err(f)| > €] < 8. This statement
is the same as saying with probability > 1 — 6,V f € H|E}r(f) — Err(f)| < e. This is just saying that the
complement of the event in statement 2 must happen with probability > 1 —§. Recall from probability that
P[A] <6 = P[4] >1-4.

So with probability > 1 — 6V f € H|Err(f) — Err(f)| < e(*). Thus you would think that minimizing Err(f)
over H is similar to minimizing Err(f) over H.

We would actually like to say that Err(fy) < Err(fp) < Err(fy) + 2¢ [because fp minimizes error but
not fy] This is easy to show. Err(fp) < Err(fp) + e < Err(fy) + € (by the definition of empirical risk
minimization) and all the preceding is < Err(fy) + € + € = Err(fy; + 2¢. The essential idea: if statement
2 is true, then (*) is true and it implies this result. This tells us that empirical risk minimization is good.
Err(fy) is the best error for function in . This makes learning possible. In order to compute fz, we need
to know nature. To compute fp, we don’t need to know nature. Now we are saying that what we learn from
experience in fp is no worse than 2e+ what we would get if we had known nature. This requires statement
2. Statement 1 is insufficient.

Now let’s ask, under what conditions would statement 2 be true? We will consider H to be a finite set of
functions H = fi, f2, ..., fv. With this, we can prove a version of statement 2. We’ll define an event F; s.t.
E is the event where [Err(f;) — Err(f1)| > e. This is an event, we can draw 2, to z, and check if the event
is true. Let Ej; be the event such that |Err(f;) — Err(f;)| > e.

We get the following;:
~ N N a2,
PUNLE] <) PIE]<Y 2
i=1 i=1

using (Union Bound i.e. P(AU B) < P(a) + P(B) and E = UYN | E;).

Let H = finite set. P[Af € Hs.t.|Err(f) — Err(f)] > €] < 2Ne~<" < § (because N is fixed and we can vary
n to make 2Ne <™ as small as we want). 2Ne €™ =§ = 2N/§ =" = n = 4 log 2.

We know that with probability > 1 — §Err(fp) < Err(fy) + 2e.

Thus we make the following statement: fix €, > 0, if n > 6%log% then with probability > 1 — 6,
Err(fp) < Err(fs + 2e. How is this statement derived? Recall that event UY | E; is true exactly when one
E; is true which means |Err(f;) — Err(fi)| > €. So we get P[Af € # s.t. |Err(f) — Err(f)| > e. We can show
this using the finiteness of H.

In words, our result says that for fixed € and 6, if we draw enough samples (for sufficiently large n) we have
high probability that our error is good and by extension fp is good.

Fix § > 0 and fix n samples. We are constrained in the number of samples we can draw. From 2N e~ =4 ,
we get that € = /Llog 2¥. Thus with probability > 1 — 4, Err(fp) < Err(fy + 24/ 1og(2¥). This is
another form of the result. Observe that if we want to do well, we want N to be small because otherwise our

error will blow up. Earlier (in previous lectures) we mentioned that we want #H to be small (and therefore
N), now we see precisely why.

So why don’t we want the cardinality of H, i.e. N, to be 1?7 If N = 1, then H is unlikely to represent the
Bayes discriminant function.

This is the tradeoff. We want H to be small to reduce error, but we want it to be expressive especially of
the Bayes discriminant function.

In retrospect, it seems that nearest neighbors may be a bad idea. In nearest neighbors, H is set of all
f: X — 0,1. For kernel based methods, we have Y7 ;| a;K,; which makes 7 an infinite set, but our results
for error only applies to a finite set, hence it is not strong enough to make any claims about many of our
methods.

It turns out that we can replace H with Vapnik and Chervonenkis’s VC(#H) (VC dimension of infinite H)
and then replace N with VC(H) in our results.

This should give us an intuition why H should be small. We have already seen that driving training error to
zero is trivial. This will provide us with a good theoretical infrastructure to examine future questions. We
will see that in learning languages, the issue of how to learn from a finite set of experiences will come up
again (we have to restrict ourselves to a set of languages).

