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4.0.0.1 Topics: Multilayer Perceptrons
4.0.0.2 1. Review

- We use perceptrons to simulate learning.

- In an ideal world, we know the distribution P on X x Y , we have an optimal classifier,
Bayes discriminant function. Thisis g: X =V sit. g(z) =1 P(Y =1jz) > 1 . gis
the best possible classifier, naturally defined.

- Normally, we don’t have g . We can only derived g from some random examples
{(zi,v:)} - In the case of preceptrons, g is of the form §(w - z) .

- The limitation of perceptrons: Data need to be separable, otherwise a perceptron does

not exist.

4.0.0.3 2. Multilayer Perceptrons

- Above discussion motivates us to consider Multilayer Perceptrons (MLPs) , also called
neural networks.
- Our convention: z € R" , y € {0,1}

- What we originally have is one neuron, now we have many neurons:

O output layer
O O O layer 2 (hidden layer)
O O O layer 1 (hidden layer)
Ty To Tn input layer

- This is also called a ”feed forward architecture” for there is no feed back.
- The whole network computes non-linear functions. This looks more like our brain.
- It was unknown how to train this network until 1986. A good reference about this is

?Perceptrons” by Minsky and Papert, 1969.
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4.0.0.4 3 Backpropagation Algorithm

- In 1986, Rumelhart, Hinton, and McClelland proposed Backpropagation Algorithm to
compute and train neural networks.

- Notation:

Ol(k) : The output of the i*" perceptron of the k" layer.

K : The number of layers. ( O is the output node.)

wg.“) : The link of node i in the (k — 1)** layer and node j in the k" layer.

nk : The number of nodes in the k" layer. (nx =1)

(zi,y:) 14 =1,2,3,...,1 are our original data. z; € RN . y; € {0,1} .

Nk—1

- We define 6(z) = 1 when z > 0, 0 otherwise. We have Oz(k) =0(> w

Jj=1

(B (k-1

Jji g

!
- We define J({wl(f)}) = t;l(yt — 0 (g, {wz(Jk)}))2 . We want to minimize J . From

the form we may see the intrinsic difficulty.

- The inovation of the paper is using the method of Gradient Descent. We have a
function J and want to find the minimum. We may compute its gradient. ;From the k"
iterative data Zj, we may compute the gradient VzJ|z—z, and let Zy1 = Z, —eVzJ|z=2, -
When the gradient is 0 , we will be at the local minimum.

- Two problems: (We won’t discuss here.)

1. How to deal with local minimum v.s. global minimum? i.e. How to make sure that
we may find the global minimum which is we want?

2. (Numerical problem) How to avoid overshooting and make our solution sequence
converge?

- To solve the problem that .J is not differentiable because 6 is a step function, we use

the sigmoidal function o(2) = where o > 0 .

- The properties of o(z) :
1.0<o(2) <1
2.0(2) > 1 when 2 >>0

3. 0(z) = 0 when z << 0

4.0.0.5 4. The Method of Greedy Descent and The Computation

- We use the method of Greedy Descent to solve our problem.
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- Let W; be weight vectors (wii ) . We have the formula Wy = Wr —erVwJ|lw=w,

. To compute Vy J , we need to compute o (,c) . By the chain rule,
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- The above results yield a method to compute all o (,c) . We first compute 5 (K) , then

aJ aJ

FOK=TT ) po =1 and we can have all derivatives. It is the reason that why we call it

1
Backpropagation. From J = 3 (y; — 0%))? we have E 2(y; — 0F)) . Hence

t=1

ao(K> =

we are able to compute by the relations we have.

4.0.0.6 5. Conclusion

- The above is the end of the theory of neural networks.
- The key problem for multilayer perceptrons: The choice of the topology of the
structure.

- In practice, people use one hidden layer with many nodes ( 2007300 , for example) .



