CMSC35000-1 Introduction to Artificial Intelligence

Winter 2005

Lecture 4: January 18

Lecturer: Partha Niyogi Scribe: Henry Wu

4.0.0.1 Topics: Multilayer Perceptrons

4.0.0.2 1. Review

- · We use perceptrons to simulate learning.
- · In an ideal world, we know the distribution P on $X \times Y$, we have an optimal classifier, Bayes discriminant function. This is $g: X \to Y$ s.t. $g(x) = 1 \Leftrightarrow P(Y = 1|x) > \frac{1}{2}$. g is the best possible classifier, naturally defined.
- · Normally, we don't have g . We can only derived \widehat{g} from some random examples $\{(x_i,y_i)\}$. In the case of preceptrons, \widehat{g} is of the form $\theta(w\cdot x)$.
- \cdot The limitation of perceptrons: Data need to be separable, otherwise a perceptron does not exist.

4.0.0.3 2. Multilayer Perceptrons

- \cdot Above discussion motivates us to consider Multilayer Perceptrons (MLPs) , also called neural networks.
- · Our convention: $x \in \mathbb{R}^n$, $y \in \{0, 1\}$
- · What we originally have is one neuron, now we have many neurons:

output layer
...

...

layer 2 (hidden layer)

...

layer 1 (hidden layer) x_1 x_2 ... x_n input layer

- · This is also called a "feed forward architecture" for there is no feed back.
- \cdot The whole network computes non-linear functions. This looks more like our brain.
- · It was unknown how to train this network until 1986. A good reference about this is
- "Perceptrons" by Minsky and Papert, 1969.

4.0.0.4 3 Backpropagation Algorithm

- · In 1986, Rumelhart, Hinton, and McClelland proposed Backpropagation Algorithm to compute and train neural networks.
- · Notation:

 $O_i^{(k)}$: The output of the i^{th} perceptron of the k^{th} layer.

K: The number of layers. ($O^{(K)}$ is the output node.)

 $w_{ij}^{(k)}$: The link of node i in the $(k-1)^{th}$ layer and node j in the k^{th} layer.

 n_k : The number of nodes in the k^{th} layer. ($n_K = 1$)

 $(x_i,y_i): i=1,2,3,...,l$ are our original data. $x_i \in R^N$. $\ y_i \in \{0,1\}$.

- · We define $\theta(z)=1$ when z>0, 0 otherwise. We have $O_i^{(k)}=\theta(\sum\limits_{j=1}^{n_{k-1}}w_{ji}^{(k)}O_j^{(k-1)})$.
- · We define $J(\{w_{ij}^{(k)}\}) = \sum_{t=1}^{l} (y_t O^{(K)}(x_t, \{w_{ij}^{(k)}\}))^2$. We want to minimize J. From the form we may see the intrinsic difficulty.
- · The inovation of the paper is using the method of Gradient Descent. We have a function J and want to find the minimum. We may compute its gradient. From the k^{th} iterative data Z_k we may compute the gradient $\nabla_Z J|_{Z=Z_k}$ and let $Z_{k+1}=Z_k-\varepsilon\nabla_Z J|_{Z=Z_k}$. When the gradient is 0, we will be at the local minimum.
- · Two problems: (We won't discuss here.)
- 1. How to deal with local minimum v.s. global minimum? i.e. How to make sure that we may find the global minimum which is we want?
- 2. (Numerical problem) How to avoid overshooting and make our solution sequence converge?
- · To solve the problem that J is not differentiable because θ is a step function, we use the sigmoidal function $\sigma(z)=\frac{1}{1+e^{-\alpha z}}$, where $\alpha>0$.
- · The properties of $\sigma(z)$:
- 1. $0 < \sigma(z) < 1$
- 2. $\sigma(z) \to 1$ when z >> 0
- 3. $\sigma(z) \to 0$ when z << 0

4.0.0.5 4. The Method of Greedy Descent and The Computation

· We use the method of Greedy Descent to solve our problem.

- · Let W_i be weight vectors $\binom{w_{ij}^{(k)}}{\dots}$. We have the formula $W_{L+1}=W_L-\varepsilon_L\nabla_W J|_{W=W_L}$
- . To compute $\nabla_W J$, we need to compute $\frac{\partial J}{\partial u_{ij}^{(k)}}$. By the chain rule,

$$\begin{split} \frac{\partial J}{\partial w_{ij}^{(k)}} &= \sum_{m=1}^{n_k} \frac{\partial J}{\partial O_m^{(k)}} \cdot \frac{\partial O_m^{(k)}}{\partial w_{ij}^{(k)}} \\ &= \frac{\partial J}{\partial O_j^{(k)}} \cdot \frac{\partial O_j^{(k)}}{\partial w_{ij}^{(k)}} \text{ (Because only } O_j^{(k)} \text{ depends on } w_{ij}^{(k)} \text{ .)} \end{split}$$

So now we want to compute $\frac{\partial J}{\partial O_i^{(k)}}$ and $\frac{\partial O_j^{(k)}}{\partial w_{ij}^{(k)}}$.

$$\cdot \text{ To compute } \frac{\partial O_j^{(k)}}{\partial w_{ij}^{(k)}} \text{ , because } O_j^{(k)} = \sigma(\sum_{m=1}^{n_{k-1}} w_{mj}^{(k)} O_m^{(k-1)}) \text{ , } \frac{\partial O_j^{(k)}}{\partial w_{ij}^{(k)}} = \frac{d\sigma}{dz} \cdot \frac{\partial z}{\partial w_{ij}^{(k)}} \text{ where } \frac{\partial O_j^{(k)}}{\partial w_{ij}^{(k)}} = \frac{d\sigma}{dz} \cdot \frac{\partial z}{\partial w_{ij}$$

$$z = \sum_{m=1}^{n_{k-1}} w_{mj}^{(k)} O_m^{(k-1)} .$$

· For
$$\sigma(z) = \frac{1}{1 + e^{-\alpha z}}$$
, $\frac{d\sigma}{dz} = -\frac{1}{(1 + e^{-\alpha z})^2} \cdot e^{-\alpha z} \cdot (-\alpha) = \frac{\alpha e^{-\alpha z}}{(1 + e^{-\alpha z})^2} = \alpha \cdot \frac{1}{1 + e^{-\alpha z}} \cdot \frac{e^{-\alpha z}}{1 + e^{-\alpha z}}$

$$= \alpha \sigma(z)(1 - \sigma(z)) .$$

· Hence we have
$$\frac{\partial O_j^{(k)}}{\partial w_{ij}^{(k)}} = \frac{d\sigma}{dz} \cdot \frac{\partial z}{\partial w_{ij}^{(k)}} = \alpha O_j^{(k)} (1 - O_j^{(k)}) O_i^{(k-1)}$$

· To compute
$$\frac{\partial J}{\partial O_j^{(k)}}$$
, by chain rule, $\frac{\partial J}{\partial O_j^{(k)}} = \sum_{m=1}^{n_{k+1}} \frac{\partial J}{\partial O_m^{(k+1)}} \cdot \frac{\partial O_m^{(k+1)}}{\partial O_j^{(k)}}$. Because

$$O_m^{(k+1)} = \sigma(\sum_{n=1}^{n_k} w_{nm}^{k+1} O_n^{(k)}) \text{ , we have } \frac{\partial O_m^{(k+1)}}{\partial O_j^{(k)}} = \frac{d\sigma}{dz} \cdot \frac{\partial z}{\partial O_j^{(k)}} \text{ (where } z = \sum_{n=1}^{n_k} w_{nm}^{k+1} O_n^{(k)} \text{)}$$

=
$$\alpha O_m^{(k+1)} (1-O_m^{(k+1)}) w_{jm}^{(k+1)}$$
 . We still have to compute $\frac{\partial J}{\partial O^{(k+1)}}$

· The above results yield a method to compute all $\frac{\partial J}{\partial w_{ij}^{(k)}}$. We first compute $\frac{\partial J}{\partial O^{(K)}}$, then

 $\frac{\partial J}{\partial O_i^{(K-1)}}, \frac{\partial J}{\partial O_i^{(K-2)}}, ...$, and we can have all derivatives. It is the reason that why we call it

Backpropagation. From $J = \sum_{t=1}^{l} (y_t - O^{(K)})^2$ we have $\frac{\partial J}{\partial O^{(K)}} = -\sum_{t=1}^{l} 2(y_t - O^{(K)})$. Hence we are able to compute by the relations we have.

4.0.0.6 5. Conclusion

- · The above is the end of the theory of neural networks.
- \cdot The key problem for multilayer perceptrons: The choice of the topology of the structure.
- · In practice, people use one hidden layer with many nodes (200~300, for example).