10.1 Introduction

Let Σ be the set of words, $\Sigma = \{ \text{the ball run and ...} \}$
Let N be the set of nonterminals, $N = \{ S, V, N, \text{Adj, Pr, ...} \}$
Consider the English language, $L_{\text{eng}} \in \Sigma^*$, having the following rule:
\[\alpha \rightarrow \beta \]
\[\alpha, \beta \in (\Sigma \cup N)^* \]

Review the levels in Chomsky’s hierarchy: with $x \in \Sigma, \beta \in N$

- Type 1 (Regular language):
 \[A \rightarrow Bx \]
 \[A \rightarrow x \]

- Type 2 (Context-free language):
 \[A \rightarrow \alpha \]

- Type 3 (Context-sensitive language):
 \[\beta A \gamma \rightarrow \alpha \]

The following sentences belong to the English language above:

The rat died (NV)
(The rat (the cat (the dog chased) ate) died) ($N^\alpha V^\beta$)

Claim: $L_{\text{eng}} \cap \{N^\alpha V^\beta\} = \{N^k V^k\}$

Question:

- Is English language context-free or not?
- Is English language regular or not?

10.2 The logical problem of language acquisition

Let us consider a language L_{eng} with a grammar $g_{\text{eng}} \in G$

Sentences: $s_1, s_2, ...$

Grammar: $g_1, g_2, ...$
10.2.1 The Central Dogma

1. All languages can be learnt
2. Learning is from positive examples
3. Learning does not depend on the precise order of examples

T is called a text corpus of a language L if:

\[T = s_1, s_2, \ldots, s_n \] such that:

- each \(s \in L \) occurs at least once in \(T \)
- no \(s \notin L \) occurs in \(T \)

Learning algorithm:

Let \(A \) be an algorithm that learns grammar \(G \) from a set of data sequences \(D \).

\[A : D \rightarrow G \]

\[D = \bigcup_{k \geq 1} D_k \] with

\[D_k = \{ (s_1, s_2, \ldots, s_k) \text{ such that } s_i \in \Sigma^* \} \]

\(D_k \) is the set of all data streams of length \(k \)

\(G \) is the set of grammar to be learnt by \(A \), \(A(\alpha) \in G \) with \(\alpha \in D \)

\(\alpha \in D \Rightarrow \alpha \in D_j \) for some \(j \)

Let \(t_k \) be the first \(k \) elements of the sequence \(T = s_1, s_2, \ldots, s_n \)

i.e \(t(k) = s_1, s_2, \ldots, s_k \) therefore:

\[t_k \in D \ \forall k \]

\(A \) learns \(g \) on text \(T \) if \(A(t_k) \rightarrow g \)

\(A(t_k) \rightarrow g \) if \(\exists N \text{ s.t } \forall n > N \)

\[L_A(t_n) = L_g \]

Note that:

\(A \) learns \(g \) if \(\forall t \text{ from } L_g, A \) learns \(g \) on text \(t \)

\(A \) learns \(G \) if \(\forall g \text{ from } G, A \) learns \(g \)

Theorem: If \(g \) is learnable by \(A \) then there exists a locking sequence \(\sigma \) for \(g \)

\[\sigma = s_1, s_2, \ldots, s_k s_i \in L_g \]

\(\sigma \) is called a locking sequence for \(g \) if:

\[L_A(\sigma) = L_g \text{ and } \forall \text{ extension } \alpha = (s'_1, s'_2, \ldots, s'_m) \text{ with } s'_m \in L_g, \text{ we have:} \]
\[L_{A(\sigma \alpha)} = L_g \]

Prove:

Suppose not, i.e. \(g \) is learnable yet no locking sequence.

Take any text \(t \) for \(g \)

\[t = s_1, s_2, \ldots \]

We will form a new text \(t' \):

Start at \(q_1 = s_1 \)

Look at \(A(q_1) \). If \(L_{A(q_1)} \neq L_g \) then

\[q_2 = q_1 \circ s_2 \]

else if \(L_{A(q_1)} = L_g \)

\[q_2 = q_1 \circ \alpha \circ s_2 \]

(because there is no locking sequence \(\Rightarrow \exists \alpha \ s.t. \ L_{A(q_1) \alpha} \neq L_g \))

Now consider the text \(t' = q_1, q_2, \ldots \)

Obviously \(t' \) is a text corpus of \(L_g \) because:

- all elements of \(L_g \) occur at least once in \(t' \)
- No element \(\not \in L_g \) in \(t' \)

We see that the text \(t' \) changes its mind infinitely often about \(g \) \(\Rightarrow g \) is not learnable \(\Rightarrow \) contradiction.

(theorem proved)

10.2.2 Gold Theorem

Gold Theorem: (Gold 1967)

If the family \(L \) (Superfinite family) consists of all the finite languages and at least 1 infinite language, then it is not learnable.

Proof:

Suppose not, i.e \(L_\infty \) is learnable, then by the Theorem, a locking sequence exists:

\[\exists \sigma_{L_\infty} = s_1, s_2, \ldots s_k s_i \in L_\infty \]

Consider \(L = \bigcup_i \{s_i\} \)

Consider a text \(t \) for \(L \) that begins with \(\sigma_{L_\infty} \)
\[t = \sigma_{L_{\infty}} s_1^{'s} s_2^{'s} s_3^{'s} \ldots \]

with \(s_i \in L \subset L_{\infty} \)

\[L_{A(t_h)} = L_{\infty} \text{ with } \forall k \geq |\sigma_{L_{\infty}}| \]

Therefore \(L \) is not learnable \(\Rightarrow \) Contradiction

10.2.3 Questions

1. \(L = \{ L_1, L_2 \} \) such that \(L_1 \subset L_2 \)

 Is \(L \) learnable?

2. \(L = \{ \text{all finite languages} \} \)

 Is \(L \) learnable?

Chomsky says the class \(G \) of all natural languages must be a subset of the set of all context-free languages (if natural languages are really context-free).