
1/18/05 Lesson 4: Typed Arith & Lambda 1

Lesson 4
Typed Arithmetic

Typed Lambda Calculus

1/18/05

Chapters 8, 9, 10

1/18/05 Lesson 4: Typed Arith & Lambda 2

Outline

• Types for Arithmetic
– types

– the typing relation

– safety = progress + preservation

• The simply typed lambda calculus
– function types

– the typing relation

– Curry-Howard correspondence

– Erasure: Curry-style vs Church-style

• Implementation

1/18/05 Lesson 4: Typed Arith & Lambda 3

Terms for arithmetic

t :: = true

 false

 if t then t else t

 0

 succ t

 pred t

 iszero t

v :: = true

 false

 nv

nv ::= 0

 succ nv

Terms Values

1/18/05 Lesson 4: Typed Arith & Lambda 4

Boolean and Nat terms

Some terms represent booleans, some represent

natural numbers.

t :: = true

 false

 if t then t else t

 0

 succ t

 pred t

 iszero t

if t then t else t

if t then t else t

1/18/05 Lesson 4: Typed Arith & Lambda 5

Nonsense terms

Some terms don’t make sense. They represent
neither booleans nor natural numbers.

succ true
iszero false
if succ(0) then true else false

These terms are stuck -- no evaluation rules apply,
but they are not values.
But what about the following?

if iszero(0) then true else 0

1/18/05 Lesson 4: Typed Arith & Lambda 6

Space of terms

0

false

true

succ(0)

iszero(pred(0))

Terms

if true then 0 else succ(0)

succ(succ(0))

1/18/05 Lesson 4: Typed Arith & Lambda 7

Bool and Nat values

iszero(pred(0))

Terms

if true then 0 else succ(0)

false

true
0

succ(0)

succ(succ(0))

Boolean values

Nat values

1/18/05 Lesson 4: Typed Arith & Lambda 8

Bool and Nat types

Terms

false

true

Evals to Bool value

0

Evals to Nat value

Bool type

Nat type

1/18/05 Lesson 4: Typed Arith & Lambda 9

Evaluation preserves type

Terms

Bool

Nat

1/18/05 Lesson 4: Typed Arith & Lambda 10

A Type System

1. type expressions: T ::= . . .

2. typing relation : t : T

3. typing rules giving an inductive definition of t : T

1/18/05 Lesson 4: Typed Arith & Lambda 11

Typing rules for Arithmetic: BN (typed)

T ::= Bool | Nat (type expressions)

true : Bool (T-True)

false : Bool (T-False)

0 : Nat (T-Zero)

t1 : Bool t3 : T

if t1 then t2 else t3 : T
(T-If)

t2 : T

t : Nat

succ t : Nat
(T-Succ)

t : Nat

pred t : Nat
(T-Pred)

t : Nat

iszero t : Bool
(T-IsZero)

1/18/05 Lesson 4: Typed Arith & Lambda 12

Typing relation

Defn: The typing relation t : T for arithmetic expressions
is the smallest binary relation between terms and types
satisfying the given rules.

A term t is typable (or well typed) if there is some T such
that t : T.

1/18/05 Lesson 4: Typed Arith & Lambda 13

Inversion Lemma

Lemma (8.2.2). [Inversion of the typing relation]

 1. If true : R then R = Bool

 2. If false : R then R = Bool

 3. If if t1 then t2 else t3 : R then t1 : Bool and t2, t3 : R

 4. If 0: R then R = Nat

 5. If succ t : R then R = Nat and t : Nat

 6. If pred t : R then R = Nat and t : Nat

 7. If iszero t : R then R = Bool and t : Nat

1/18/05 Lesson 4: Typed Arith & Lambda 14

Typing Derivations

A type derivation is a tree of instances of typing rules
with the desired typing as the root.

iszero(0) : Bool pred(0) : Nat

if iszero(0) then 0 else pred 0 : Nat
(T-If)

0: Nat

0 : Nat 0 : Nat
(T-Zero) (T-Zero)

(T-Pred)(T-IsZero)

The shape of the derivation tree exactly matches the

shape of the term being typed.

1/18/05 Lesson 4: Typed Arith & Lambda 15

Uniqueness of types

Theorem (8.2.4). Each term t has at most one type. That

is, if t is typable, then its type is unique, and there is a

unique derivation of its type.

1/18/05 Lesson 4: Typed Arith & Lambda 16

Safety (or Soundness)

Safety = Progress + Preservation

Progress: A well-typed term is not stuck -- either it is a
value, or it can take a step according to the evaluation rules.

Preservation: If a well-typed term makes a step of evaluation,
the resulting term is also well-typed.

Preservation is also known as “subject reduction”

1/18/05 Lesson 4: Typed Arith & Lambda 17

Cannonical forms

Defn: a cannonical form is a well-typed value term.

Lemma (8.3.1).

 1. If v is a value of type Bool, then v is true or v is false.

 2. If v is a value of type Nat, then v is a numeric value,

 i.e. a term in nv, where

 nv ::= 0 | succ nv.

1/18/05 Lesson 4: Typed Arith & Lambda 18

Progress and Preservation for Arithmetic

Theorem (8.3.2) [Progress]
 If t is a well-typed term (that is, t: T for some type T),
 then either t is a value or else t → t’ for some t’.

Theorem (8.3.3) [Preservation]
 If t: T and t → t’ then t’ : T.

Proofs are by induction on the derivation of t: T.

1/18/05 Lesson 4: Typed Arith & Lambda 19

Simply typed lambda calculus

To type terms of the lambda calculus, we need types for
functions (lambda terms):

 T1 → T2

A function type T1 → T2 specifies the argument type T1 and

the result type T2 of the function.

1/18/05 Lesson 4: Typed Arith & Lambda 20

Simply typed lambda calculus

The abstract syntax of type terms is

 T ::= base types
 T → T

We need base types (e.g Bool) because otherwise we could
build no type terms.

We also need terms of these base types,so we have an “applied”
lambda calculus. In this case, we will take Bool as the sole
base type and add corresponding Boolean terms.

1/18/05 Lesson 4: Typed Arith & Lambda 21

Abstract syntax and values

Terms

t :: = true
 false
 if t then t else t
 x
 λx: T . t
 t t

v :: = true
 false
 λx: T . t

Values

Note that terms contain types! Lambda expressions

are explicitly typed.

1/18/05 Lesson 4: Typed Arith & Lambda 22

Typing rule for lambda terms

The body of a lambda term (usually) contains free variable
occurrences. We need to supply a context (Γ) that gives
types for the free variables.

Defn: A typing context Γ is a list of free variables with their
types. A variable can appear only once in a context.

 Γ ::= ∅ | Γ, x: T

Γ, x: T1 ⊢ t2 : T2

Γ ⊢ λx: T1. t2 : T1 → T2
(T-Abs)

1/18/05 Lesson 4: Typed Arith & Lambda 23

Typing rule for applications

The type of the argument term must agree with the

argument type of the function term.

Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12

(T-App)
Γ ⊢ t1 : T11 → T12

1/18/05 Lesson 4: Typed Arith & Lambda 24

Typing rule for variables

The type of a variable is taken from the supplied context.

Γ ⊢ x : T
(T-Var)

x : T ∈ Γ

1/18/05 Lesson 4: Typed Arith & Lambda 25

Inversion of typing relation

Lemma (9.3.1). [Inversion of the typing relation]

 1. If Γ ⊢ x : R then x: R ∈ Γ
 2. If Γ ⊢ λx: T1. t2 : R then R = T1 → R2 for some R2 with

 Γ, x: T1 ⊢ t2 : R2.

 3. If Γ ⊢ t1 t2 : R, then there is a T11 such that Γ ⊢ t1: T11 → R

 and Γ ⊢ t2 : T11.

 4. If Γ ⊢ true : R then R = Bool

 5. If Γ ⊢ false : R then R = Bool

 6. If Γ ⊢ if t1 then t2 else t3 : R then Γ ⊢ t1 : Bool

 and Γ ⊢ t2, t3 : R

1/18/05 Lesson 4: Typed Arith & Lambda 26

Uniqueness of types

Theorem (9.3.3): In a given typing context Γ containing all the

free variables of term t, there is at most one type T such that

Γ ⊢ t: T.

1/18/05 Lesson 4: Typed Arith & Lambda 27

Canonical Forms (λ→)

Lemma (9.3.4):

 1. If v is a value of type Bool, then v is either true or false.

 2. If v is a value of type T1→T2, then v = λx: T1.t.

1/18/05 Lesson 4: Typed Arith & Lambda 28

Progress (λ→)

Theorem (9.3.5): Suppose t is a closed, well-typed term (so
⊢ t: T for some T). Then either t is a value, or t → t’ for
some t’.

Proof: by induction on the derivation of ⊢ t: T.

Note: if t is not closed, e.g. f true, then it may be in normal
form yet not be a value.

1/18/05 Lesson 4: Typed Arith & Lambda 29

Permutation and Weakening

Lemma (9.3.6) [Permutation]: If Γ ⊢ t: T and Δ is a permutation

of Γ, then Δ ⊢ t: T.

Lemma (9.3.7) [Weakening]: If Γ ⊢ t: T and x∉dom(Γ), then

for any type S, Γ, x: S ⊢ t: T, with a derivation of the same

depth.

Proof: by induction on the derivation of ⊢ t: T.

1/18/05 Lesson 4: Typed Arith & Lambda 30

Substitution Lemma

Lemma (9.3.8) [Preservation of types under substitutions]:

If Γ, x: S ⊢ t : T and Γ ⊢ s: S, then Γ ⊢ [x ↦ s]t: T.

Proof: induction of the derivation of Γ, x: S ⊢ t : T.
Replace leaf nodes for occurences of x with copies of
the derivation of Γ ⊢ s: S.

1/18/05 Lesson 4: Typed Arith & Lambda 31

Preservation (λ→)

Theorem (9.3.9) [Preservation]:
If Γ ⊢ t : T and t → t’, then Γ ⊢ t’ : T.

Proof: induction of the derivation of Γ ⊢ t : T, similar
to the proof for typed arithmetic, but requiring the
Substitution Lemma for the beta redex case.

Homework: write a detailed proof of Thm 9.3.9.

1/18/05 Lesson 4: Typed Arith & Lambda 32

Introduction and Elimination rules

λ Introduction

Γ ⊢ t2 : T11

Γ ⊢ t1 t2 : T12
(T-App)

Γ ⊢ t1 : T11 → T12

Γ, x: T1 ⊢ t2 : T2

Γ ⊢ λx: T1. t2 : T1 → T2
(T-Abs)

λ Elimination

Typing rules often come in intro-elim pairs like this.
Sometimes there are multiple intro or elim rules for a construct.

1/18/05 Lesson 4: Typed Arith & Lambda 33

Erasure

Defn: The erasure of a simply typed term is defined by:

 erase(x) = x

 erase(λx: T. t) = λx. erase(t)
 erase(t1 t2) = (erase(t1))(erase(t2))

erase maps a simply typed term in λ→ to the corresponding

untyped term in λ.

 erase(λx: Bool. λy: Bool → Bool. y x) = λx. λy. y x

1/18/05 Lesson 4: Typed Arith & Lambda 34

Erasure commutes with evaluation

t

m’t’

m
erase

erase

evalλ→ evalλ

Theorem (9.5.2)
 1. if t → t’ in λ→ then erase(t) → erase(t’) in λ.

 2. if erase(t) → m in λ then there exists t’ such
 that t → t’ in λ→ and erase(t’) = m.

1/18/05 Lesson 4: Typed Arith & Lambda 35

Curry style and Church style

Curry
 define evaluation for untyped terms, then define
 the well-typed subset of terms and show that they don’t
 exhibit bad “run-time” behaviors.
 Erase and then evaluate.

Church
 define the set of well-typed terms and give evaluation
 rules only for such well-typed terms.

1/18/05 Lesson 4: Typed Arith & Lambda 36

Homework

Modify the simplebool program to add arithmetic terms
and a second primitive type Nat.

1. Add Nat, 0, succ, pred, iszero tokens to lexer and parser.
2. Extend the definition of terms in the parser with

 arithmetic forms (see tyarith)
3. Add type and term constructors to abstract syntax in

 syntax.sml, and modify print functions accordingly.
4. Modify the eval and typeof functions in core.sml to

 handle arithmetic expressions.

1/18/05 Lesson 4: Typed Arith & Lambda 37

Optional homework

Can you define the arithmetic plus operation in λ→ (BN)?

