
1/10/05 Lesson 3: Formalizing Lambda 1

Lesson 3
Formalizing and Implementing

 Pure Lambda Calculus

1/10/05
Chapters 5.3, 6, 7

1/10/05 Lesson 3: Formalizing Lambda 2

Outline

• Operational semantics of the lambda
calculus
– substitution
– alpha-conversion, beta reduction
– evaluation

• Avoiding names -- deBruijn indices
– substitution
– evaluation

• Implementation in ML

1/10/05 Lesson 3: Formalizing Lambda 3

Abstract Syntax

• ! is a countable set of variables

• " is the set of terms defined by

 t :: = x (x ∈ V)

 | λx.t (x ∈ V)

 | t t

1/10/05 Lesson 3: Formalizing Lambda 4

Free variables

The set of free variables of a term is defined by

 FV(x) = {x}
 FV(λx.t) = FV(t) \ {x}
 FV(t1 t2) = FV(t1) ∪ FV(t2)

E.g. FV(λx. y(λy. xyu)) = {y,u}

1/10/05 Lesson 3: Formalizing Lambda 5

Substitution and free variable capture

Define substitution naively by

 [x ↦ s]x = s
 [x ↦ s]y = y if y ≠ x
 [x ↦ s](λy.t) = (λy.[x ↦ s]t)
 [x ↦ s](t1 t2) = ([x ↦ s]t1) ([x ↦ s]t2)

Then
(1) [x ↦ y](λx.x) = (λx.[x ↦ y]x) = (λx.y) wrong!
(2) [x ↦ y](λy.x) = (λy.[x ↦ y]x) = (λy.y) wrong!

(1) only free occurrences should be replaced.
(2) illustrates free variable capture.

1/10/05 Lesson 3: Formalizing Lambda 6

Renaming bound variables

The name of a bound variable does not matter. We
can change bound variable names, as long as we avoid
free variables in the body:
Thus λx.x = λy.y
but λx.y ≠ λy.y.

Change of bound variable names is called α-conversion.

To avoid free variable capture during substitution,
we change bound variable names as needed.

1/10/05 Lesson 3: Formalizing Lambda 7

Substitution refined

Define substitution

 [x ↦ s]x = s
 [x ↦ s]y = y if y ≠ x
 [x ↦ s](λy.t) = (λy.[x ↦ s]t) if y ≠ x and y ∉ FV(s)
 [x ↦ s](t1 t2) = ([x ↦ s]t1) ([x ↦ s]t2)

When applying the rule for [x ↦ s](λy.t), we change
the bound variable y if necessary so that the side
conditions are satisfied.

1/10/05 Lesson 3: Formalizing Lambda 8

Substitution refined (2)

The rule

 [x ↦ s](λy.t) = (λy.[x ↦ s]t) if y ≠ x and y ∉ FV(s)

could be replaced by

 [x ↦ s](λy.t) = (λz.[x ↦ s][y ↦ z]t)
 where z ∉ FV(t) and z ∉ FV(s)

Note that (λx.t) contains no free occurrences of x,
so
 [x ↦ s](λx.t) = λx.t

1/10/05 Lesson 3: Formalizing Lambda 9

Operational semantics (call by value)

Syntax:
 t :: = Terms
 x (x ∈ V)

 | λx.t (x ∈ V)

 | t t

 v ::= λx.t Values

We could also regard variables as values (if we want
to evaluate open terms):

 v ::= x | λx.t

1/10/05 Lesson 3: Formalizing Lambda 10

Operational semantics: CBV rules

t1 → t1’

t1 t2 → t1’ t2

t2 → t2’

v1 t2 → v1 t2’

(λx.t1) v2 → [x ↦ v2] t1

evaluate function before argument

evaluate argument before applying function

See Exercise 5.3.6 (& solution) for other strategies.

beta reduction

1/10/05 Lesson 3: Formalizing Lambda 11

Avoiding variables

Managing bound variable names to avoid free
variable capture is messy. We can avoid name
clashes by eliminating variable names.

De Bruijn indices are a device for replacing names

with “addresses” of variables.

 λx.x becomes λ.0

 λx.x(λy.xy) becomes λ.0(λ.1 0)

Index i refers to the ith nearest enclosing binder
(counting from 0).

1/10/05 Lesson 3: Formalizing Lambda 12

(Open) de Bruijn Terms

Defn: T is the smallest family {Tn} such that
1. k ∈ Tn when 0 <= k < n
2. if t1 ∈ Tn and n > 0, then λ.t1 ∈ Tn-1

3. if t1 ∈ Tn and t2 ∈ Tn then t1 t2 ∈ Tn

Idea: Tn is the set of term that may have
free variables addressing a context of
length n (n-1 ... 0).

1/10/05 Lesson 3: Formalizing Lambda 13

Free variables

This explains how to replace bound variables. What do
we do with free variables?

Assume an ordered context listing all free variables
that can occur, and map free variables to their index
in this context (counting right to left)
 Context: a, b
 a  1, b  0

 λx.a  λ.2, λx.b  λ.1, λx.b(λy.a) λ.1(λ.3)

Imagine virtual λ-binders for a and b around term.

1/10/05 Lesson 3: Formalizing Lambda 14

Substitution

When substituting into a lambda term, the indices
have to be adjusted (shifted):

 [x ↦ z] (λy.x) in context x,z

 [1 ↦ 0] (λ.2) = (λ.[2 ↦ 1] 2) = (λ.1)

shift(d,c) (k) = k if k < c
 k+d if k >= c
shift(d,c) (λ.t) = (λ.shift(d,c+1)(t))
shift(d,c) (t1 t2) = (shift(d,c) (t1)) (shift(d,c) (t2))

1/10/05 Lesson 3: Formalizing Lambda 15

Substitution

 [j ↦ s] k = s if k = j
 k otherwise

 [j ↦ s] (λ.t) = λ.[j+1 ↦ shift(1,0)s] t

 [j ↦ s] (t1 t2) = ([j ↦ s] t1) ([j ↦ s] t2)

Beta-reduction

 (λ.t) v → shift(-1,0)([0 ↦ shift(1,0)(v)] t)

