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Lesson 3
Formalizing and Implementing

 Pure Lambda Calculus

1/10/05
Chapters 5.3, 6, 7
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Outline

• Operational semantics of the lambda 
calculus
– substitution
– alpha-conversion, beta reduction
– evaluation

• Avoiding names -- deBruijn indices
– substitution
– evaluation

• Implementation in ML
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Abstract Syntax

• ! is a countable set of variables

• " is the set of terms defined by

 t :: =  x (x ∈ V)

  |  λx.t (x ∈ V)

       |  t t
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Free variables

The set of free variables of a term is defined by

    FV(x) = {x}
    FV(λx.t) = FV(t) \ {x}
    FV(t1 t2) = FV(t1) ∪ FV(t2)

E.g. FV(λx. y(λy. xyu)) = {y,u}
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Substitution and free variable capture

Define substitution naively by

    [x ↦ s]x = s
    [x ↦ s]y = y   if y ≠ x
    [x ↦ s](λy.t) = (λy.[x ↦ s]t)
    [x ↦ s](t1 t2) = ([x ↦ s]t1) ([x ↦ s]t2)

Then
(1)    [x ↦ y](λx.x) = (λx.[x ↦ y]x) = (λx.y)  wrong!
(2)   [x ↦ y](λy.x) = (λy.[x ↦ y]x) = (λy.y)   wrong!

(1) only free occurrences should be replaced.
(2) illustrates free variable capture.
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Renaming bound variables

The name of a bound variable does not matter.  We
can change bound variable names, as long as we avoid
free variables in the body:
Thus     λx.x  =  λy.y 
but       λx.y  ≠  λy.y.

Change of bound variable names is called α-conversion.

To avoid free variable capture during substitution,
we change bound variable names as needed. 
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Substitution refined

Define substitution

    [x ↦ s]x = s
    [x ↦ s]y = y   if  y ≠ x
    [x ↦ s](λy.t) = (λy.[x ↦ s]t)  if  y ≠ x and y ∉ FV(s) 
    [x ↦ s](t1 t2) = ([x ↦ s]t1) ([x ↦ s]t2)

When applying the rule for [x ↦ s](λy.t), we change 
the bound variable y if necessary so that the side 
conditions are satisfied.
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Substitution refined (2)

The rule

    [x ↦ s](λy.t) = (λy.[x ↦ s]t)  if  y ≠ x and y ∉ FV(s) 

could be replaced by

    [x ↦ s](λy.t) = (λz.[x ↦ s][y ↦ z]t)
    where z ∉ FV(t) and z ∉ FV(s)

Note that (λx.t) contains no free occurrences of x, 
so
    [x ↦ s](λx.t) = λx.t
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Operational semantics (call by value)

Syntax: 
  t :: =              Terms
           x (x ∈ V)

        |  λx.t (x ∈ V)

        |  t t

  v ::= λx.t         Values

We could also regard variables as values (if we want 
to evaluate open terms):

  v ::= x | λx.t 
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Operational semantics: CBV rules

t1 → t1’ 

t1 t2 → t1’ t2 

t2 → t2’ 

v1 t2 → v1 t2’ 

(λx.t1) v2 → [x ↦ v2] t1

evaluate function before argument

evaluate argument before applying  function

See Exercise 5.3.6 (& solution) for other strategies.

beta reduction
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Avoiding variables

Managing bound variable names to avoid free 
variable capture is messy.  We can avoid name 
clashes by eliminating variable names.

De Bruijn indices are a device for replacing names 

with “addresses” of variables.

  λx.x  becomes  λ.0

  λx.x(λy.xy)  becomes  λ.0(λ.1 0)

Index i refers to the ith nearest enclosing binder
(counting from 0).
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(Open) de Bruijn Terms

Defn: T is the smallest family {Tn} such that
1. k ∈ Tn  when 0 <= k < n
2. if t1 ∈ Tn and n > 0, then λ.t1 ∈ Tn-1

3. if t1 ∈ Tn and t2 ∈ Tn then t1 t2 ∈ Tn

Idea: Tn is the set of term that may have 
free variables addressing a context of 
length n (n-1 ... 0).
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Free variables

This explains how to replace bound variables.  What do 
we do with free variables?

Assume an ordered context listing all free variables 
that can occur, and map free variables to their index 
in this context (counting right to left)
     Context:  a, b
     a  1,  b  0

     λx.a   λ.2,  λx.b   λ.1,  λx.b(λy.a)  λ.1(λ.3)

Imagine virtual λ-binders for a and b around term.
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Substitution

When substituting into a lambda term, the indices
have to be adjusted (shifted):

  [x ↦ z] (λy.x)   in context x,z

  [1 ↦ 0] (λ.2) = (λ.[2 ↦ 1] 2) = (λ.1)

shift(d,c) (k) = k if k < c
                        k+d if k >= c
shift(d,c) (λ.t) = (λ.shift(d,c+1)(t))
shift(d,c) (t1 t2) = (shift(d,c) (t1)) (shift(d,c) (t2))
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Substitution

  [j ↦ s] k  =  s if k = j
           k otherwise

  [j ↦ s] (λ.t)  =  λ.[j+1 ↦ shift(1,0)s] t

  [j ↦ s] (t1 t2)  =  ([j ↦ s] t1) ([j ↦ s] t2)

Beta-reduction

  (λ.t) v  → shift(-1,0)([0 ↦ shift(1,0)(v)] t)


