CS 336 Programming Languages Homework Solution 4
Winter 2005 Due 2/24/05

1 Problem 1. (20 pts)

Do Exercise 18.6.2.

We define anetaoperation+ on types as follows: IR is a record type with labels given bybels(R) and
with the field type for labein denoted byR(m), then

R'=R+{l:T:}
is a record type such that
labels(R') = labels(R) U {I}
and with field types given by

R(m) = Tiifm=I
= R(m) if m € labels(R) — {I}
ThatisR + {l : Ty} is a record thaéxtendsk with a new field with label of type T;. The labell may be

among the fields oR, in which case the existing field is overridden. Note that-theperator is not part of
the type language; it is a meta-notation for expressing a derived record type.

This version of thavith operation assumes that we are adding/overriding one field. A more general version
would allow the the concatenation of two arbitrary record values. This is a fairly straightforward generaliza-
tion of the development below.

Syntax. The only syntactic category that is changed is terms, and types and values remain as before:

tuo=...|twith{l: T}

Typing Rules. There is one new typing rule:

't :R I'Fty: To
T'Fty with{l: t2} : R+ {l: T,}

(T-WITH)

Evaluation Rules.

t1 —t]
ty with {I: to} — t} with {l : to}

(E-WITHLEFT)

tp — th

E-WITHRIGHT
vi with {l : to} — vy with {l: t} ( )

vy with {I : vo} — v (E-WITH)



wherev is the concatenation of the record values:

labels(v) = labels(v1) U {l}

vim) = vy ifm=1I
vi(m) if m € labels(vy) — {I}

2 Problem 2. (20 pts)

Redo the examples of Section 20.1 using the isorecursive types of Figure 20.1.

Lists.
NatList = uX.(nil : Unit, cons : Nat x X)
nil = fold[NatList]({nil = unit) as (nil : Unit, cons : Nat x NatList))
cons = An: Nat.Al: NatList.({cons = (n, 1)) as (nil : Unit, cons : Nat x NatList))
isnil = Al : NatList. case unfold[NatList] | of (nil = u) = true|({cons = p) = false
hd = Al: NatList. case unfold[NatList] | of {(nil = u) = 0|{cons = p) = p.1
tl = Al': NatList. case unfold[NatList] | of (nil = u) = nil|(cons = p) = p.2
sumlist = wunchanged
Hungry
Hungry = pA.Nat— A
f = fix(\Mf : Nat — Hungry. An : Nat. fold[Hungry| f
Streams
Stream = pA.Unit — Nat x A
hd = As.(unfold[Stream] s unit).1
tl = MXs.(unfold[Stream] s unit).2
upfrom = fix(Af : Nat — Stream. An : Nat. fold[Stream] (A_ : Unit. (n, f(succ(n)))))
upfrom0 = upfrom0



Processes

Process = pA.Nat — (Nat x A)
pl = fix(\f: Nat — Process. Aacc : Nat. fold[Process|(An : Nat. let nacc = plus acc n in (nacc, f nacc)))
p = p0
curr = As: Process. (unfold[Process] s 0).1
send = An.As: Process. (unfold[Process| s n).2
Objects
Counter = uC.{get: Nat, inc: Unit — C, dec : Unit — C}
¢ = letcreate = fix(Af : {x: Nat} — Counter. As : {x : Nat}.

fold[Counter]
{get = s.x,
inc = A_: Unit. f{x = succ(ms.z)},
dec = A_: Unit. f{x = pred(ms.z)}})
in create {x = 0}

Fixed Point Operator (CBN)

fixp = M:T—>T.
(Ax : (pA.A — T).f(unfold[pA.A — T]x x))
(fold[puA.A — T] ((Ax : (pA.A — T).f(unfold[A.A — T]x x)))

Untyped Lambda Calculus

D = X X—>X
lam = A :D — D.fold[D]f
ap = M :D.)Xa:D.unfold[D]f a
D = uX. {nat:Nat,fn: X — X)
lam = A :D — D.fold[D] ({fn = f) as (nat : Nat,fn : D — D))
ap = Af:D.\a:D.caseunfold[D]f of (nat = n) = divergep unit | (fn =f) = f aa



3 Problem 3. (20 pts)

Redo the examples of the previous exercise in Standard ML.

NatList
datatype NatList = NIL | CONS of int * NatList

val cons = (fn (n,) => cons (n,l))

fun isnil NIL = true
| isnil _ = false

fun hd NIL = O
| hd (CONS(n,)) = n

fun tl NIL = NIL
| I (CONS( D) = |

fun sumlist (I: NatList) =
if isnil | then O else hd | + sumlist (tl I)

fun sumlist NIL = 0
| sumlist (n:l) = n + sumlist |

Hungry
datatype Hungry = H of int -> Hungry

fun fO n = H f0
val f : Hungry = H fO
fun ap (H f: Hungry) n = f n

ap (ap f 0) 1

Stream

datatype Stream = S of unit -> int * Stream
fun hd (S f) = #1(f ()

fun tl (S f) = #2(f ()

fun upfrom n = S(fn () => (n, upfrom(n + 1))

val upfromO = upfrom O

Process



datatype Process = P of int -> (int * Process)

fun pf acc = P(fn n => let val newacc = acc + n in (newacc, pf newacc) end
val p = pf 0

fun curr (P s: Process) = #1(s 0)

fun send (n: int) (P s: Process) = #2(s n)

Fixed Point Operator (CBV)

datatype 'a f = F of 'a f -> 'a
fun unkF (F f) = f

fun 'a fix (f : 'a -> 'a) =
(fn (x: 'a f) => f ((unF x) X))(F(fn (x: 'a f) => f ((unF x) X)))

Untyped Lambda Calculus
datatype D = MkD of D -> D

fun lam (f : D -> D) = MkD f

fun ap (MkD f: D) (a: D) = f a

datatype D’ = Nat of int | Fn of D’ -> D’
fun lam’ (f: D' -> D) = Fn f

fun ap’ (Fn f: D) (a: D) = f a
| ap’ (Nat n: D) (a: D) = raise Fail "ap™

4 Problem 4. (20 pts)

Prove Theorem 23.5.1 (Preservation for the polymorphic lambda calculus, Figure 23.1). Give only the new
cases involving the polymorphic constructs of the language.

TheoremI'Ft: T & t—t = I'Ht':T.

Proof: We prove this by induction on the rules deriving— t’. We need only deal with the new cases
involving polymorphism, namely the evaluation rules (EPF) and (E-TRPPTABS).

Caseit — t' by (E-TaPP).
Sot = t1[T,] andt’ = t{[T,] where:

(1) t1 — t/l
By Inversion, there exist$;, such that
(2) T=[X+—Ta|Ti2

(3) 'k t1 . VX.le



Then by the Induction Hypothesis afith and(2) we have
(4) '+ t/l VX T1o

Therefore by (T-TAP) we have:
(5) 'k t/l [Tg] : [X — T2]T12

and hence

Case:it — t' by (E-TAPPTABS).
Then for someX, t15, To we have

(1) t = (AX. t12)[T2]

(2) t = [X — T2] tio
By inversion ofl" - (AX.t12)[T2] : T there existsT 1, such that

(3) T=[X—TyT12

(4) I }_ )\X t12 . VX T12

Then by Inversion of (4) we have
(5) F, X+ tio: Too

Now we need to make use of the following Substitution Lemma for types:
Lemma[Substitution for Types]. For any,

X, AFt: T = I X—SJAF [X— S]t: [X— S|T

Now applying this lemma t¢5) with S = T, andA = (), we have
(6) [ X Toltin o [X = T Tro

and hence, by (2) and (3),
(7) THY:T

Proof of Substitution Lemma for Types.

We prove this by induction on the typing rules.
For any construct, let o* be[X — S]a. So we must show that

(1) DA Ft*: T«

Case The hypothesis holds by (TAR).
Thent = x and by Inversionx : T € I', X, A. Note also that* = z.

There are two cases:
(i) x : T € I": Then we note thaX is not free inl’, and thereford™* = T. So

(2) IEx:T
which is equivalent to

(3) DEx*:T"



Then by the appropriate Weakening Lemma, noting thatDom(A), we have:

(4) T, A*Ex T

(i) x : T € A: In this caseX may occur free ifT. It is clear from the definition ofX — S]A that
(5) x: [X+—=S]T € [X+— S]A
(6) [X+— SJAF x: [X+— S|T by (T-VAR)

and hence by Weakening

(7)  T,[X—SJAFx:[X—S]T QED

Case (T-ABS) sot = Ax: Ti.to andT = T; — T, where
(8) F,X,A,XITll_tQZTQ
By the Induction Hypothesis,

9) X, (A)x:Ty)*Ht5: T3 hence

(
(10) X, A% x: TT Ft5: T3 hence, by (T-AS)
(11) X, A" (Ax: T7.t5) : T5  hence
(12) D, XA*F (Ax:Ti.tp)*: T3 QED
Case (T=TABS) sot = AY.t; andT = VY.Ty, where
(13) XA YR Ty
and we can assumé# Y and hencé&™* =Y. By the Induction Hypothesis
(14) X (AY) =t :T5, or

(15) X, A% Y =t : T7, hence
(16) DX, A" Y Bt 2Ty, sinceY* =Y
Then by (T-TABS) we have
(17) X, A" Y. 1] 1 VY. T3, or, equivalently,
(18)  IL,X,A*F (AY.t))*: (VY. Ty)*, QED

The other, simpler cases are left as exercises.

5 Problem 5. (20 pts)

Prove the Progress theorem for Existential types (Figure 24.1). Give only the new cases involving the exis-
tential type constructs.

Theorem: Ft: T = tisavalue, odt'.t — t’

Proof: We prove this by induction on the typing rules for t : T, doing only the cases associated with
existential types.

Case (T-Pack). So

(1) t={U,tz2} as {IX, T2}



(2) T={3X, T12}

By Inversion, we have
(3) Lty [X+— UT,

By the Induction Hypothesis, either
(4) ty isavalue, or

(5) Jth.te — t),

If t is a value, then so is and we are done. So suppose ttigtholds. Then by (E-Rck), we have

(6) t — {U,t,} as {3X, To} QED

Case (T-UNPACK). So
(1) t=let {X,;x} =t1inty

By Inversion, there exists a typle, such that
(2) F'Ht;:{3X, Tz} and

(3) F,X,XSlektng

By the Induction Hypothesis and 2), we have either
(4) t; is avalue, or

(5) Jt).t1 — )

If (4) is the case, then by the Canonical Forms Lemma (appropriately extended), we have
(6) t; = {"U,vi}as{3X, T1o}

for some typdJ and valuevs;. Then by (E-WPACKPACK) we have
(7) t — [X— U][x — vq]to

and we are done. If (5) holds, then by (BxBACK), we have
(8) t—let{X,x}=t]ints

and sot makes a transition and we are done.



