
CS 336 Programming Languages Homework Solution 4
Winter 2005 Due 2/24/05

1 Problem 1. (20 pts)

Do Exercise 18.6.2.

We define ameta-operation+ on types as follows: IfR is a record type with labels given bylabels(R) and
with the field type for labelm denoted byR(m), then

R′ = R + {l : T1}

is a record type such that

labels(R′) = labels(R) ∪ {l}

and with field types given by

R′(m) = T1 if m = l

= R(m) if m ∈ labels(R)− {l}

That isR + {l : T1} is a record thatextendsR with a new field with labell of typeT1. The labell may be
among the fields ofR, in which case the existing field is overridden. Note that the+ operator is not part of
the type language; it is a meta-notation for expressing a derived record type.

This version of thewith operation assumes that we are adding/overriding one field. A more general version
would allow the the concatenation of two arbitrary record values. This is a fairly straightforward generaliza-
tion of the development below.

Syntax. The only syntactic category that is changed is terms, and types and values remain as before:

t ::= . . . | t with {l : T}

Typing Rules. There is one new typing rule:

Γ ` t1 : R Γ ` t2 : T2

Γ ` t1 with{l : t2} : R + {l : T2}
(T-WITH)

Evaluation Rules.

t1 → t′1
t1 with {l : t2} → t′1 with {l : t2}

(E-WITHLEFT)

t2 → t′2
v1 with {l : t2} → v1 with {l : t′2}

(E-WITHRIGHT)

v1 with {l : v2} → v (E-WITH)

1



wherev is the concatenation of the record values:

labels(v) = labels(v1) ∪ {l}

v(m) = v2 if m = l

= v1(m) if m ∈ labels(v1)− {l}

2 Problem 2. (20 pts)

Redo the examples of Section 20.1 using the isorecursive types of Figure 20.1.

Lists.

NatList = µX.〈nil : Unit, cons : Nat× X〉

nil = fold[NatList](〈nil = unit〉 as 〈nil : Unit, cons : Nat× NatList〉)

cons = λn : Nat.λl : NatList.(〈cons = (n, l)〉 as 〈nil : Unit, cons : Nat× NatList〉)

isnil = λl : NatList. case unfold[NatList] l of 〈nil = u〉 ⇒ true|〈cons = p〉 ⇒ false

hd = λl : NatList. case unfold[NatList] l of 〈nil = u〉 ⇒ 0|〈cons = p〉 ⇒ p.1

tl = λl : NatList. case unfold[NatList] l of 〈nil = u〉 ⇒ nil|〈cons = p〉 ⇒ p.2

sumlist = unchanged

Hungry

Hungry = µA.Nat → A

f = fix(λf : Nat → Hungry. λn : Nat. fold[Hungry] f

Streams

Stream = µA.Unit → Nat× A

hd = λs. (unfold[Stream] s unit).1

tl = λs. (unfold[Stream] s unit).2

upfrom = fix(λf : Nat → Stream. λn : Nat. fold[Stream] (λ : Unit. (n, f(succ(n)))))

upfrom0 = upfrom 0

2



Processes

Process = µA.Nat → (Nat× A)

p1 = fix(λf : Nat → Process. λacc : Nat. fold[Process](λn : Nat. let nacc = plus acc n in (nacc, f nacc)))

p = p 0

curr = λs : Process. (unfold[Process] s 0).1

send = λn. λs : Process. (unfold[Process] s n).2

Objects

Counter = µC. {get : Nat, inc : Unit → C, dec : Unit → C}

c = let create = fix(λf : {x : Nat} → Counter. λs : {x : Nat}.
fold[Counter]
{get = s.x,

inc = λ : Unit. f{x = succ(ms.x)},
dec = λ : Unit. f{x = pred(ms.x)}})

in create {x = 0}

Fixed Point Operator (CBN)

fixT = λf : T → T.

(λx : (µA.A → T). f(unfold[µA.A → T] x x))
(fold[µA.A → T] ((λx : (µA.A → T). f(unfold[µA.A → T] x x)))

Untyped Lambda Calculus

D = µX.X → X

lam = λf : D → D. fold[D] f

ap = λf : D. λa : D. unfold[D] f a

D = µX. 〈nat : Nat, fn : X → X〉

lam = λf : D → D. fold[D] (〈fn = f〉 as 〈nat : Nat, fn : D → D〉)

ap = λf : D. λa : D. case unfold[D] f of 〈nat = n〉 ⇒ divergeD unit | 〈fn = f〉 ⇒ f aa

3



3 Problem 3. (20 pts)

Redo the examples of the previous exercise in Standard ML.

NatList

datatype NatList = NIL | CONS of int * NatList

val cons = (fn (n,l) => cons (n,l))

fun isnil NIL = true
| isnil _ = false

fun hd NIL = 0
| hd (CONS(n,_)) = n

fun tl NIL = NIL
| tl (CONS(_,l)) = l

fun sumlist (l: NatList) =
if isnil l then 0 else hd l + sumlist (tl l)

fun sumlist NIL = 0
| sumlist (n::l) = n + sumlist l

Hungry

datatype Hungry = H of int -> Hungry

fun f0 n = H f0

val f : Hungry = H f0

fun ap (H f: Hungry) n = f n

ap (ap f 0) 1

Stream

datatype Stream = S of unit -> int * Stream

fun hd (S f) = #1(f ())

fun tl (S f) = #2(f ())

fun upfrom n = S(fn () => (n, upfrom(n + 1)))

val upfrom0 = upfrom 0

Process

4



datatype Process = P of int -> (int * Process)

fun pf acc = P(fn n => let val newacc = acc + n in (newacc, pf newacc) end

val p = pf 0

fun curr (P s: Process) = #1(s 0)

fun send (n: int) (P s: Process) = #2(s n)

Fixed Point Operator (CBV)

datatype ’a f = F of ’a f -> ’a

fun unF (F f) = f

fun ’a fix (f : ’a -> ’a) =
(fn (x: ’a f) => f ((unF x) x))(F(fn (x: ’a f) => f ((unF x) x)))

Untyped Lambda Calculus

datatype D = MkD of D -> D

fun lam (f : D -> D) = MkD f

fun ap (MkD f: D) (a: D) = f a

datatype D’ = Nat of int | Fn of D’ -> D’

fun lam’ (f: D’ -> D’) = Fn f

fun ap’ (Fn f: D’) (a: D’) = f a
| ap’ (Nat n: D’) (a: D’) = raise Fail "ap’"

4 Problem 4. (20 pts)

Prove Theorem 23.5.1 (Preservation for the polymorphic lambda calculus, Figure 23.1). Give only the new
cases involving the polymorphic constructs of the language.

Theorem: Γ ` t : T & t → t′ ⇒ Γ ` t′ : T.

Proof: We prove this by induction on the rules derivingt → t′. We need only deal with the new cases
involving polymorphism, namely the evaluation rules (E-TAPP) and (E-TAPPTABS).

Case:t → t′ by (E-TAPP).
Sot = t1[T2] andt′ = t′1[T2] where:

(1) t1 → t′1

By Inversion, there existsT12 such that

(2) T = [X 7→ T2]T12

(3) Γ ` t1 : ∀X.T12

5



Then by the Induction Hypothesis and(1) and(2) we have

(4) Γ ` t′1 : ∀X.T12

Therefore by (T-TAPP) we have:

(5) Γ ` t′1[T2] : [X 7→ T2]T12

and hence

(6) Γ ` t′ : T

Case:t → t′ by (E-TAPPTABS).
Then for someX, t12, T2 we have

(1) t = (λX. t12)[T2]

(2) t′ = [X 7→ T2] t12

By inversion ofΓ ` (λX. t12)[T2] : T there existsT12 such that

(3) T = [X 7→ T2]T12

(4) Γ ` λX. t12 : ∀X.T12

Then by Inversion of (4) we have

(5) Γ,X ` t12 : T12

Now we need to make use of the following Substitution Lemma for types:

Lemma[Substitution for Types]. For anyS,

Γ,X,∆ ` t : T ⇒ Γ, [X 7→ S]∆ ` [X 7→ S]t : [X 7→ S]T

Now applying this lemma to(5) with S = T2 and∆ = ∅, we have

(6) Γ ` [X 7→ T2]t12 : [X 7→ T2]T12

and hence, by (2) and (3),

(7) Γ ` t′ : T

Proof of Substitution Lemma for Types.

We prove this by induction on the typing rules.

For any constructα, let α∗ be[X 7→ S]α. So we must show that

(1) Γ,∆∗ ` t∗ : T∗

Case: The hypothesis holds by (T-VAR).
Thent = x and by Inversion,x : T ∈ Γ,X,∆. Note also thatx∗ = x.

There are two cases:
(i) x : T ∈ Γ: Then we note thatX is not free inΓ, and thereforeT∗ = T. So

(2) Γ, ` x : T

which is equivalent to

(3) Γ, ` x∗ : T∗

6



Then by the appropriate Weakening Lemma, noting thatx 6∈ Dom(∆), we have:

(4) Γ,∆∗ ` x∗ : T∗

(ii) x : T ∈ ∆: In this case,X may occur free inT. It is clear from the definition of[X 7→ S]∆ that

(5) x : [X 7→ S]T ∈ [X 7→ S]∆

(6) [X 7→ S]∆ ` x : [X 7→ S]T by (T-VAR)

and hence by Weakening

(7) Γ, [X 7→ S]∆ ` x : [X 7→ S]T QED

Case: (T-ABS) sot = λx : T1.t2 andT = T1 → T2, where

(8) Γ,X,∆, x : T1 ` t2 : T2

By the Induction Hypothesis,

(9) Γ,X, (∆, x : T1)∗ ` t∗2 : T∗
2 hence

(10) Γ,X,∆∗, x : T∗
1 ` t∗2 : T∗

2 hence, by (T-ABS)

(11) Γ,X,∆∗ ` (λx : T∗
1. t

∗
2) : T∗

2 hence

(12) Γ,X,∆∗ ` (λx : T1. t2)∗ : T∗
2 QED

Case: (T=TABS) sot = λY.t1 andT = ∀Y.T1, where

(13) Γ,X,∆,Y ` t1 : T1

and we can assumeX 6= Y and henceY∗ = Y. By the Induction Hypothesis

(14) Γ,X, (∆,Y)∗ ` t∗1 : T∗
1, or

(15) Γ,X,∆∗,Y∗ ` t∗1 : T∗
1, hence

(16) Γ,X,∆∗,Y ` t∗1 : T∗
1, sinceY∗ = Y

Then by (T-TABS) we have

(17) Γ,X,∆∗ ` λY. t∗1 : ∀Y.T∗
1, or, equivalently,

(18) Γ,X,∆∗ ` (λY. t1)∗ : (∀Y.T1)∗, QED

The other, simpler cases are left as exercises.

5 Problem 5. (20 pts)

Prove the Progress theorem for Existential types (Figure 24.1). Give only the new cases involving the exis-
tential type constructs.

Theorem: ` t : T ⇒ t is a value, or∃t′. t → t′

Proof: We prove this by induction on the typing rules for̀ t : T, doing only the cases associated with
existential types.

Case: (T-PACK). So

(1) t = {U, t2} as {∃X, T2}

7



(2) T = {∃X, T2}

By Inversion, we have

(3) Γ ` t2 : [X 7→ U]T2

By the Induction Hypothesis, either

(4) t2 is a value, or

(5) ∃t′2. t2 → t′2

If t2 is a value, then so ist, and we are done. So suppose that(5) holds. Then by (E-PACK), we have

(6) t → {U, t′2} as {∃X, T2} QED

Case: (T-UNPACK). So

(1) t = let {X, x} = t1 in t2

By Inversion, there exists a typeT12 such that

(2) Γ ` t1 : {∃X, T12} and

(3) Γ,X, x : T12 ` t2 : T

By the Induction Hypothesis and 2), we have either

(4) t1 is a value, or

(5) ∃t′1. t1 → t′1

If (4) is the case, then by the Canonical Forms Lemma (appropriately extended), we have

(6) t1 = {∗U, v1}as{∃X, T12}

for some typeU and valuev1. Then by (E-UNPACKPACK) we have

(7) t → [X 7→ U][x 7→ v1]t2

and we are done. If (5) holds, then by (E-UNPACK), we have

(8) t → let {X, x} = t′1 in t2

and sot makes a transition and we are done.

8


