
CS 336 Programming Languages Homework Solution 3
Winter 2005 Due 2/10/05

1 Problem 1. (25 pts)

Modify the treatment of lists in Section 11.12 (Figure 11-13) to use a case expression in place of primitive
functions head, tail, and isnil, and show that the Progress theorem holds for the result (in contrast to the
original treatment, for which Progress does not hold (see the solution for Exercise 11.12.1)).

The modified syntax for list terms is:

t ::= . . .

nil[T]
cons[T] t1 t2

case[T] t1 of nil => t2 | cons x1 x2 => t3

The evaluation rules for the case expression are:

case[S] nil[T] of nil => t1 | cons x1 x2 => t2 −→ t1 (E-CaseNil)

case[S] cons[T] v1 v2 of nil => t1 | cons x1 x2 => t2 −→ t2 (E-CaseCons)

t −→ t′

case[S] t of nil => t1 | cons x1 x2 => t2 −→ case[S] t′ of nil => t1 | cons x1 x2 => t2
(E-Case)

The typing rule for the case expression is:

Γ ` t1 : List T1 Γ ` t2 : T Γ, x1 : T1, x1 : List T1 ` t3 : T
Γ ` case[T1] t1 of nil => t2 | cons x1 x2 => t3 : T

(T-Case)

The progress theorem states:

Theorem [Progress]:` t : T ⇒ t is a value, or∃t′. t −→ t′.

Proof: We give just the new case for case expressions.

Case:t = case[T1] t1 of nil => t2 | cons x1 x2 => t3

We assume that the hypothesis̀t : T holds. Then by the appropriately extended Inversion Lemma, we have

(1) ` t1 : List T1

Then by the Induction Hypothesis, with have either

(2a) t1 is a value, or

(2b) t1 −→ t′
1 for somet′

1

If (2a) is the case, then by the Canonical Forms lemma for the language with lists, either:

(3a) t1 = nil[T1] or

(3b) t1 = cons v1 v2 for somev1 andv2

1

If (3a) is the case, then

(4a) t −→ t2 by (E-CaseNil)

while if (3b) is the case, then

(4b) t −→ [x1 7→ v1, x2 7→ v2]t3 by (E-CaseCons)

If, on the other hand, (2b) is true, then

(5) t −→ case[T1] t′
1 of nil => t2 | cons x1 x2 => t3 by (E-Case)

2 Problem 2. (15 pts)

Give a term whose evaluation does not terminate in the CBV lambda calculus with Nat, Bool, and Ref, but
no fix operator.

Solution: The idea is to use a ref cell to create a function that calls itself recursively, each time on the same
argument (or on an argument that is growing, rather than shrinking). I’ll use alet syntax, which, as usual,
abbreviates a lambda term applied to an argument. The following example is representative. It sets up a
function that unconditionally calls itself on the same argument through the ref cellr

let r : Ref(Nat → Nat) = ref (λ n: Nat . n)
in let f : Nat → Nat = λ x : Nat . ! r (x)

in let u : Unit = r := f
in f 0

3 Problem 3. (25 pts)

Do the inductive case fort = ref t1 in the proof of 13.5.3.

Solution: We assume thatt = ref t1 and that the hypotheses of the Theorem hold:

(1) Γ|Σ ` t : T

(2) Γ|Σ ` µ

(3) t|µ → t′|µ′

By Inversion on(1), there exists a typeT1 such that

(4) T = Ref T1

(5) Γ|Σ ` t1 : T1

There are two cases, according to the rule justifying(1).

Case: (3) by (E-REFL).
Here we know thatt1 is a valuev1, and we have

(6) ref v1|µ → l | (µ, l 7→ v1)

wherel is a new location (not in the domains ofΣ andµ), andt′ = l. Letµ′ = (µ, l 7→ v1) andΣ′ = Σ, l : T1.
Then

(7) Γ|Σ′ ` l : Ref T1 by (T-LOC)

2

and hence by(4)

(8) Γ|Σ′ ` t′ : T

Finally, by(2) and the definition ofΣ′, we have

(9) Γ|Σ′ ` µ′ by (2) and the defn ofΣ′

Case: (3) by (E-REF).
Here there exists a termt′

1 such thatt′ = ref t′
1, and we have

(10) ref v1|µ → ref t′
1 |µ′

where

(11) t1|µ → t′
1 |µ′

Then by the Induction Hypothesis, there existsΣ′ ⊇ Σ such that

(12) Γ|Σ′ ` t′
1 : T1

(13) Γ|Σ′ ` µ′

Then by(12) and the typing rule (T-REF) we have

(14) Γ|Σ′ ` t′ : T

4 Problem 4. (25 pts)

Do the inductive case for∅|Σ ` t : Ref T in the proof of 13.5.7. [Note: This problem is ill-posed. The case
structure for the proof will be based on the typingrules, so for the typeRef T there will actually be two cases,
for the rules (T-LOC) and (T-REF).]

Solution: We do the two cases associated with (T-LOC) and (T-REF).

Case:∅|Σ ` l : Ref T by (T-LOC).
Thent = l, a value, and we are done.

Case:∅|Σ ` ref t1 : Ref T1 by (T-REF).
Then by the Inversion Lemma, we have

(1) ∅|Σ ` t1 : T1

Then by the induction hypothesis, either

(2) t1 is a value,v or

(3) ∀µ. ∅|Σ ` µ ⇒ ∃t′
1.∃µ′. t1|µ → t′

1|µ′

Suppose(2) is the case, and thatµ is a store such that∅|Σ ` µ. Then by (E-REFV), we will have

(4) ref v1|µ → l | (µ, l 7→ v1)

wherel is a new location. So, takingt′ = l andµ′ = (µ, l 7→ v1), we have

(5) t|µ → t′ |µ′

If, on the other hand,t1 is not a value and(3) holds, then for any storeµ such that∅|Σ ` µ there exists a
termt′

1 such that

t1|µ → t′
1|µ′

and therefore by rule (E-REF)

(5) ref t1|µ → ref t′
1 |µ′

3

5 Problem 5. (15 pts)

Do Exercise 15.5.2 (page 198).

Solution: Part (1), a program that will be well-typed ifRef is contravariant (the first premise is dropped):

let r : Ref {a: Nat} = ref {a = 1}
in (!r).b

Here the body expression type-checks under the assumption that

Ref{a : Nat} <: Ref{a : Nat, b : Nat}

which is a consequence ofRef being contravariant.

Part (2), a program that will be well-typed ifRef is covariant (the second premise is dropped):

let r : Ref {a: Nat, b: Nat} = ref {a = 1, b = 2}
in _ : Unit = (r := {a = 1})

in (!r).b

Here the second line type checks ifRef is covariant and hencer : Ref{a : Nat}. The third line then leads
to a stuck state when we attempt to project theb field of the record value{a = 1}.

4

