
CmSc336: Types

Homework 1 Solutions

Ido Rosen

18 January 2005

Administrativia

This section applies to all graded work and solution sets.

Any questions regarding specific grades or comments on homework should be
sent via email to <ido@cs.uchicago.edu>. If you wish to make an appointment
to discuss something or to correct me if I have made a mistake, please email me
with at least a day’s notice. Most late afternoons (3-5PM), I am in Ry254.

Homework should be handed in on time. If your homework is not complete by
the beginning of class, don’t do it during class–just email it to me as soon as
possible. You should hand in late homework, even if it is too late to be graded,
so that I at least have a chance to read your work and give you some feedback.
(If you aren’t getting a grade, you can still get some acknowledgement of your
effort this way.)

Any programming assignments or homework with programming should be handed
in electronically (via email). If you are feeling extra-sneaky, you may encrypt it
to my PGP key or use my web interface: https://idorosen.com/encrypt.

If your solution is exemplary, it may be used as a sample solution. If your
solution is particularly bad, it may be displayed for entertainment purposes.
(Just kidding!)

Learning is more important than grades.

1

https://www.idorosen.com/encrypt

1 Big-step evaluation

4.2.2 Exercise [Recommended, ??? 9]: Change the definition of
the eval function in the arith implementation to the big-step
style introduced in Exercise 3.5.17. �

Listing 1: Code courtesy of Dave MacQueen
structure Core =
struct

open Syntax

exception NoRuleApplies

fun isnumericval t =
case t

of TmZero => true
| TmSucc (,t1) => isnumericval t1
| TmPred (,t1) => isnumericval t1
| => false

fun isval t =
case t

of TmTrue => true
| TmFalse => true
| t => isnumericval t

(∗ invariant : eval2 t returns a normal form (not necessarily a value),
∗ or raises NoRuleApplies. ∗)

(∗ eval2: big−step evaluation, with shallow runtime type checking ∗)
(∗ This produces some nonvalue results, e.g.
∗ eval2(TmSucc(TmTrue)) ==> TmSucc(TmTrue)
∗
∗ One could add some deeper checks, such as checking that isnumericval
∗ is true for result of eval2 t1 in the TmSucc case.
∗)

fun eval2 t =
case t

of TmZero => t
| TmTrue => t
| TmFalse => t
| TmIf(,t1,t2,t3) =>

(case eval2 t1
of TmTrue => eval2 t2

2

| TmFalse => eval2 t3
| => raise NoRuleApplies)

| TmSucc(info,t1) => TmSucc(NONE, eval2 t1)
| TmPred(info,t1) =>

(case eval2 t1
of TmZero => TmZero NONE
| TmSucc(,t1’) => t1’
| => raise NoRuleApplies)

| TmIsZero(info,t1) =>
(case eval2 t1

of TmZero => TmTrue NONE
| TmSucc => TmFalse NONE
| => raise NoRuleApplies)

| => raise NoRuleApplies

fun eval t =
eval2 t
handle NoRuleApplies => t

end (∗ structure Core ∗)

3

(∗ the following version that checks the evaluated argument of TmSucc
∗ should always return a valid value if NoRuleApplies is not raised.
∗ The name ”NoRuleApplied” should probably be changed to ”TypeError”.
∗)

fun eval3 t =
case t

of TmZero => t
| TmTrue => t
| TmFalse => t
| TmIf(,t1,t2,t3) =>

(case eval2 t1
of TmTrue => eval2 t2
| TmFalse => eval2 t3
| => raise NoRuleApplies)

| TmSucc(info,t1) =>
let val t1’ = eval2 t1
in (∗ prevent nonvalue normal forms from being constructed ∗)

if isnumericval t1
then TmSucc(NONE, t1’)
else raise NoRuleApplies

end
| TmPred(,t1) =>

(case eval2 t1
of TmZero => TmZero NONE
| TmSucc(,t1’) => t1’
| => raise NoRuleApplies)

| TmIsZero(info,t1) =>
(case eval2 t1

of TmZero => TmTrue NONE
| TmSucc => TmFalse NONE
| => raise NoRuleApplies)

| => raise NoRuleApplies

4

2 Your wrong

5.3.7 Exercise [?? 9]: Exercise 3.5.16 gave an alternative presen-
tation of the operational semantics of booleans and arithmetic
expressions in which stuck terms are defined to evaluate to a
special constant wrong. Extend this semantics to λNB �

Listing 2: Changes to the operational semantics in 3.5.16
t ::= ... | λx.t
v ::= ... | λx.t
badnat ::= ... | λx.t
badλ ::= wrong | nv | true | false
badλ t → wrong
(λx.t)v → [x → v]t

3 Shifting

6.2.3 Exercise [?? 9]: Show that if t is an n-term, then ↑ d
c (t) is

an (n + d)-term. �

Proof by structural induction on t. Cases taken from (6.2.1). Assume c < n.

Hypothesis t is an n-term (t ∈ τn) =⇒↑ d
ct ∈ τn+d

Base Case t = k, where 0 ≤ k < n

↑ d

c
k =

{
k if k < c

k + d if k ≥ c

Suppose k < c, then ↑ d
c k = k. k < n ≤ n + d.

∴ k ∈ τn+d

First Inductive Case t = λ.t1
t ∈ τn ⇒ λ.t1 ∈ τn ⇒ t1 ∈ τn+1 (inversion of the definition of τn)
Induction Hypothesis: ↑ d

c t1 ∈ τ(n+1)+d(= τ(n+d)+1)
By definition of τn, λ(↑ d

c t1) ∈ τn+d

Second Inductive Case t = t1 t2
t ∈ τn ⇒ t1 ∈ τn, t2 ∈ τn (inversion of the definition of τn)
Induction Hypothesis: ↑ d

c t1 ∈ τn+d and ↑ d
c t2 ∈ τn+d

By definition of τn, ((↑ d
c t1)(↑ d

c t2)) ∈ τn+d

By definition of ↑ d
c : ((↑ d

c t1)(↑ d
c t2)) =↑ d

c (t1 t2) =↑ d
ct

∴↑ d
ct ∈ τn+d

5

Inversion Lemma

λt ∈ τn ⇒ t ∈ τn+1 (1)
(t1t2) ∈ τn ⇒ t1 ∈ τn, t2 ∈ τn (2)

The lemma can be proved by inspection for our purposes.

4 Not to be negative, but...

6.3.1 Exercise [?]: Should we be worried that the negative shift
in this rule might create ill-formed terms containing negative
indices? �

No.
Variables shifted down have previously been shifted up.

Zero indices have been eliminated by substitution.

6

	Big-step evaluation
	Your wrong
	Shifting
	Not to be negative, but...

