
Essentials of Standard ML Modules

Mads Tofte

Department of Computer Science
University of Copenhagen

Abstract� The following notes give an overview of Standard ML Mod�
ules system��

Part � gives an introduction to ML Modules aimed at the reader who
is familiar with a functional programming language but has little or no
experience with ML programming�

Part � is a half�day practical intended to give the reader an opportu�
nity to modify a small� but non�trivial piece of software using functors�
signatures and structures�

PART �

� Introduction

It is now more than ten years ago that David MacQueen made his proposal for
MLModules�Mac���� At the time� there was very little experience with large scale
programming in ML� At the time the Modules were formally de�ned ��	�
��	�	��
there was still a certain amount of guesswork involved� still because of the limited
practical experience� Today� hundreds of thousands of lines of ML later� ML
programmers have a much clearer picture of what the most important aspects
of the Standard ML modules are� In the experience of the author� there are
certain features of the ML Modules system that are exploited again and again�
while others play a strictly secondary role� Moreover� these essential features are
actually surprisingly few in number and not hard to grasp� Finally� their scope
is not limited to ML� for example� they are completely independent of the fact
that ML is a strict �rather than an lazy� language� The purpose of these notes
is to focus on these few essentials of ML Modules�

� By and large� these notes are consistent with The De�nition of Standard

ML�MTH���� as regards syntax� semantics and terminology� As it happens� the Def�
inition is currently being revised� primarily in order to simplify the modules system�
In these notes we concentrate on those aspects of the ML modules that will still
be present in the revised language� For brevity� we refer to the old and the revised
languages as SML �� and SML ��� respectively� when the distinction matters�

The exercises in the �rst part can be solved without the use of a computer	 the tuto�
rial assumes that an SML �� implementation with the Edinburgh Library preloaded
is available� The ML code for Part
 is available from the author�s World�Wide Web
home page�

� Packaging Code using Structures

In programming languages the term module means a packaged program unit
which can be combined with other modules to form a �possibly large� software
system� The adjective modular is often used as a positive term� implying tidy
design and good software hygiene�

Many functional languages already have a concept of type which is strong
enough to allow the orderly organisation of values� For example� it is much easier
to program with binary trees� if one uses recursive datatypes than if one uses
pointers to represent trees� Also� function composition is a way of organising
computations �each function is regarded as a computation�� type checking can
catch meaningless combinations of computations at compile time� Moreover�
since the composition of two functions is again a function� which is itself a value�
functional languages make it possible to �compute with computations� in an
orderly manner� So why add language constructs for modularity�

The reason is that in a typed language one wants an orderly organisation
not just of values but also of types� There is a useful distinction between a
value and its type� the type is usually much simpler and reveals less detail
than the value� Similarly� there is a useful distinction between a particular type
�i�e�� a choice of data type� and the speci�cation that a type exist and have
a certain arity� say� Both forms of information hiding are important in typed
languages� In ML� values cannot contain types� so one cannot simply build a
record containing a datatype together with some operations on that type� The
separation of values and types makes static type checking possible� However�
the price for this separation is that one needs separate language constructs for
packaging types and values that belong together�

ML allows the programmer to package a collection of types and values into
a single unit� called a structure� The corresponding notion in ADA is package�

Here is a structure� called IntFn � which implements �nite maps on integers�

structure IntFn �

struct

exception Apply
type �a intmap � int �� �a
fun e i � raise Apply
fun app f x � f x
fun extend �a�b� f i �
if i�a then b else f i

end�

Having declared IntFn� we can refer to the types and values it contains using
quali�ed identi�ers� A quali�ed identi�er starts with a structure name� then
comes a period and at the end is a normal identi�er�

val a� bool IntFn�intmap � IntFn�e
val b � IntFn�extend ��� true� a
val c � IntFn�app b �
val d � IntFn�app b ��

�The type constraint �� bool IntFn�intmap� isn�t really needed� but it illustrates
that one can refer to types as well as values��

Exercise �� What are the types of b� c and d�

Below is a signature which speci�es the types and values of IntFn without
revealing what they are�

signature INTMAP �

sig

exception Apply
type �a intmap
val e� �a intmap
val app� �a intmap �� int �� �a
val extend� int��a ��

�a intmap �� �a intmap
end�

To sum up� a collection of values and types can be packaged into a structure�
In the above example� we had just one type in the structure� it is common to
introduce several types in a single structure� A signature is a �structure type��
i�e�� it classi�es structures in analogy with the fact that types classify values�

� Using Signatures as Interfaces

In typed programming languages� a type checker can ensure that no value is
used in a way which con�icts with its type� The same idea is clearly useful at
the level of modules� For example� it should be a �type error� to place a structure
M in some context where one actually needs a module which implements more
operations than M does�

When one declares a structure in ML� one can get the compiler to check
whether the structure matches a given signature� For example� if we assume
that we have �rst declared signature INTMAP as above� but not yet IntFn� we
can declare IntFn as follows�

structure IntFn� INTMAP �

struct

exception Apply
type �a intmap � int �� �a
fun e i � raise Apply
fun app f x � f x
fun extend �a�b� f i �
if i�a then b else f i

end�

The only change is in the �rst line� the �� INTMAP� is an example of a signature
constraint� it makes the compiler check whether the declared structure really
matches the signature� Roughly speaking� a structure matches a signature if it
has all the types and values speci�ed in the signature� In addition� the types in
the structure must have the arities speci�ed in the signature and the values in
the structure must have the types speci�ed in the signature� �The structure is
allowed to have more values and types than the ones speci�ed by the signature��

If the structure does not match the signature� an error message is printed�
Otherwise� the result of the constrained declaration is that the structure identi�
�er �here IntFn� is bound to a structure which has precisely the values and types
speci�ed by the signature �here INTMAP�� In other words� after the declaration�
one can only refer to those components of the structure that are speci�ed in the
signature�

However� a signature constraint does not hide the identity of the types that
appear both in the structure and in the signature� Hence� after the above dec�
laration� one can exploit the fact that IntFn really is a function type� so one is
allowed to write for example�

val x � IntFn�e ��

�This will raise an exception� when evaluated� but the declaration is well�typed��
Contrast this with the politically correct�

val y � IntFn�app IntFn�e ��

which is well�typed even if we only assume the type information which is given
in the signature�

The form of matching just described is called transparent matching� since
the true identity of types shines through the signature constraint� SML �	� also
provides opaque matching� which results in a structure which has precisely the
type information and components which are speci�ed in the signature� It uses
the keyword �� �read� coerced to� instead of �� so one can write for example�

structure IntFn�� INTMAP �

struct

exception Apply
type �a intmap � int �� �a
fun e i � raise Apply
fun app f x � f x
fun extend �a�b� f i �
if i�a then b else f i

end�

after which the declaration of x above would be illegal� whereas the declaration
of y would still be legal�

� An Analogy with Mathematics

The distinction we made in Section � �namely between� on the one hand� actual
types and values and� on the other hand� the speci�cation of types and values� is
not in any way new� Indeed� mathematicians have been doing this sort of thing
for centuries� A mathematician introduces the concept of a group roughly like
this�

De�nition�� A group �G� �� is a set G equipped with a composition � � G�G�
G which is associative� has a neutral element and satis�es that every element of
G has an inverse�

Shortly after� one might �nd the following example�

The integers �Z��� is a group�

The point is that the de�nition of groups is independent of which set and which
composition is chosen� To specify groups in SML� one declares�

signature GROUP �

sig

type G
val e � G
val bullet� G � G �� G
val inv� G �� G

end�

Admittedly� this speci�cation would probably not satisfy a mathematician� since
it does not specify the required properties of e� bullet and inv � However� the
advantage of providing only relatively simple forms of speci�cations is that it is
decidable whether a given structure matches a given signature � this is highly

desirable when working with many modules and speci�cations� The group of
integers is now declared as follows� where 	 means unary minus�

structure Z � GROUP �

struct

type G � int
val e � �
fun bullet�n�int�m� � n�m
fun inv�n�int� � 	n

end�

� Parameterised Modules

The reason group theory is group theory is that it applies to all groups� The
mathematicians do not re�invent group theory each time a new group comes
along� Using Computer Science jargon� the de�nition of groups is the interface
to group theory� If we want to write code which works for all groups� it su�ces
to see how mathematicians refer to groups without considering a particular one�
They simply say� �Let �G� �� be a group�� This is a very compact way of saying
several things at once� First� the statement �xes attention on a hypothetical
group and gives it a name� Second� it says that� until further notice� all we may
assume about �G� �� is that it is a group� It is an elementary logical mistake
to use the members of G as integers� say� unless the set G has explicitly been
constrained to be the integers�

The way to write an ML module which works for any group is to use a
functor� e�g��

functor Sq�Gr� GROUP� � GROUP �

struct

type G � Gr�G � Gr�G
val e ��Gr�e� Gr�e�
fun bullet��a��b����a	�b	�� �

�Gr�bullet�a��a	��
Gr�bullet�b��b	��

fun inv�a�b� � �Gr�inv a� Gr�inv b�
end�

Here Sq is the name of the functor� Gr is the formal parameter� the �rst occur�
rence ofGROUP is the parameter signature� the rightmost occurrence ofGROUP
is the result signature and the structure expression struct � � � end is the body of
the functor� Inside the body of the functor� all we may assume about structure
Gr is that it matches the parameter signature� The scope of the speci�cation

of Gr is the result signature and the functor body� So in general� a functor
declaration

functor f �X� �� � �� � body

is the ML programmer�s way of saying� �let X be a structure which matches ���
If we want to write a module which works only for groups over the integers

we have to constrain the type Gr�G to int and this has to be done �up front��
when we introduce Gr as a formal parameter �i�e�� the body of the functor is
not allowed to impose type equalities which are not speci�ed in the parameter
signatures�� In SML 	� one uses a type sharing constraint in the signature�

functor Try�Gr�
sig

type G
sharing type G � int
val e� G
val bullet� G�G��G
val inv� G �� G

end� �

struct

val x � Gr�inv�Gr�bullet�
� ���
end�

In SML 	� one can express the same thing more brie�y using a where type

quali�er on the signature GROUP�

functor Try�Gr� GROUP
where type G � int� �

struct

val x � Gr�inv�Gr�bullet�
� ���
end�

or by using a type abbreviation in the signature�

functor Try�Gr�
sig

type G � int
val e� G
val bullet� G�G��G
val inv� G �� G

end� �

struct

val x � Gr�inv�Gr�bullet�
� ���
end�

Since the above functors are all closed � in the sense that they contain no free
identi�ers apart from identi�ers which are available initially �e�g�� int and ��
� it is possible to compile the functors� When a functor has been successfully
compiled� one knows that the body of the functor is well�typed assuming only
what the parameter signature reveals about the parameter� Thus the parameter
signature is not merely a comment about what structures the functor needs� it
is a guarantee that whenever one provides an actual structure that matches the
parameter signature� one can combine the functor and the argument structure
without violating the type soundness of the functor body�

The result signature in a functor declaration is optional� Also� in SML 	� one
can choose between specifying the result signature with opaque and transparent
matching� �SML 	� provides only transparent matching��

� Functor Application

The way one uses a functor is to apply it to an actual argument which matches
the parameter signature� e�g��

structure S � Try�Z�

Hence combining modules is akin to combination �i�e�� application� in the ��
calculus� a functor can be regarded as a map from structures to structures� In
a functor application �Try�Z �� it is �rst checked that the argument structure
�Z� matches the parameter signature �GROUP� of the functor �Try�� If the
match fails� an error message is printed� Otherwise� the body of the functor is
evaluated� resulting in a structure� In our example� this structure is then bound
to a structure identi�er �S� but that is not part of the functor application per
se�

Type information is propagated through functor application� For example�
consider the application

structure SqZ � Sq�Z��

After the declaration we have SqZ �G � int � int � obtained as the result of
simplifying the declaration type G � Gr �G � Gr �G �which is part of the body
of Sq�� using that Gr � Z �

If the functor has been declared using an opaque result signature� the result
structure will only have the type equalities which are speci�ed in the result
signature� Thus the equality SqZ �G � int � int would not hold if we had used
�� instead of � in the declaration of Sq� If one prefers using opaque signature
constraints� one can retrieve the equality by imposing a where type quali�cation
on the result signature when the functor is declared�

functor Sq�Gr� GROUP� �� GROUP
where type G � Gr�G � Gr�G �

struct

type G � Gr�G � Gr�G
val e ��Gr�e� Gr�e�
fun bullet��a��b����a	�b	�� �

�Gr�bullet�a��a	��
Gr�bullet�b��b	��

fun inv�a�b� � �Gr�inv a� Gr�inv b�
end�

� Building Systems

Suppose we want to create a system consisting of three structures� A� B and C�
where B refers to A and C refers to both A and B� The situation can be drawn
as follows�

A

B

C

�
��

�
�
�R

Suppose that A� B and C have to match signatures SIGA� SIGB and SIGC�
respectively� The simplest way to construct the system is to have three structure
declarations after each other�

structure A� SIGA � strexpA�
structure B� SIGB � strexpB�
structure C� SIGC � strexpC�

where strexpA� strexpB and strexpC are appropriate structure expressions� such
that strexp

B
contains free occurrences of quali�ed identi�ers starting with A

and strexpC contains free occurrences of quali�ed identi�ers starting with A or
B� However� this organisation does not give a clear picture of the dependencies
between the three modules� �To see whether C depends on A� one has to scan
the entire declaration of C��

To make the dependencies explicit �and to facilitate separate compilation�
one can use functors instead�

functor mkA�� � strexpA�

functor mkB�A� SIGA�� SIGB �

strexp
B
�

functor mkC�
structure A� SIGA
structure B� SIGB��SIGC �

strexp
C
�

structure A � mkA���
structure B � mkB�A��
structure C � mkC�
structure A � A
structure B � B��

Incidentally� this example illustrates how one writes nullary functors and functors
with more than one structure parameter� in the latter case� one has to put the
keyword structure in front of each structure parameter� and this is repeated
when the functor is applied�

The signature SIGB may specify a type which really stems from SIGA �an
example will be given below�� It may then be necessary for mkC to assume that
the two types A�t or B�t are actually the same type� For example� consider��

signature SIGA �

sig

type t
val mk� int�� t
val p� t�t�� t

end�

signature SIGB �

sig

type b
val b�� b
type t
val f� b �� t

end�

� In SML ��� the example has to be modi�ed slightly� since chr and ord are changing
type�

signature SIGC �

sig

type t
val test� t
end�

functor mkA��� SIGA �

struct

type t � string
fun mk�i�int��string �

chr��i � ord �a��mod �	�
fun p�n�m�string� � nm �� means string concatenation ��

end�

functor mkB�A� SIGA�� SIGB �

struct

type b � string
val b� � �abc�
type t � A�t
fun f�s�string� � A�mk�size s�

end�

functor mkC�
structure A� SIGA
structure B� SIGB��SIGC �

struct

type t � A�t
val test � A�p�A�mk ���A�p�A�mk ��B�f�B�b����

end�

structure A � mkA���
structure B � mkB�A��
structure C � mkC�
structure A � A
structure B � B��

The declarations up to and including mkB are all �ne� but the declaration of
mkC is ill�typed� Indeed� the ML Kit complains�

A�p�A�mk ���A�p�A�mk ��B�f�B�b����

��������������������

Type clash�

operand suggests operator type	 t
 t��t

but I found operator type	 t
 t������t

The mysterious
��� in the last line indicates that the type di�ers from the
corresponding type in the line above� Indeed� B�f�B�b�� has type B�t and A�mk

� has type A�t and nowhere did we state that those two types be the same �as
is required by the type of A�p�� In some cases such a type error is an indication
that the functor is wrong� i�e�� that one has confused two types� But in this case�
we really want to say that A�t and B�t are the same type� which we achieve by
inserting a type sharing constraint in the start of mkC�

functor mkC�
structure A� SIGA
structure B� SIGB
sharing type A�t � B�t��SIGC �

� � � as before � � �

After this correction� the declaration ofmkC is well�typed� Moreover� the applica�
tion of mkC is well�typed� it is automatically checked that the sharing constraint
is satis�ed� which it is with A�t � B �t � string� The result is a system which
consists of three structures� as depicted earlier�

Exercise �� What is the value of C�test�

The preceding examples �excluding the SML 	� examples� can be found in the
�le examples�sml � To run them� start an ML session in the same directory as
the examples �le� Then type� use �examples�sml���

PART �� PRACTICAL

� Implementing a Polymorphic Type	Checker

The purpose of this practical is to allow you to work through a slightly larger
example of program development using ML modules� You are given a collection
of modules that implement a type checker and interpreter for Mini ML� a tiny
subset of the SML Core language�

The system can be executed and you can modify and extend it provided you
have access to an implementation and to the �les listed in Appendix B� We pro�
vide a parse functor which can parse a Mini ML source expression �represented
as a string� into an abstract syntax tree� The rest of the interpreter works on
abstract syntax trees� Unlike most real ML systems� the Mini ML system is an
interpreted system� Your job will be to work on the polymorphic type checker�

Here is the grammar for Mini ML�

exp ��� exp � exp
exp � exp
exp � exp
true

false

exp � exp
if exp then exp else exp
exp �� exp
� exp� � � � � � expn � �n � ��
let x � exp in exp end

let rec x � exp in exp end

x

fn x �� exp
exp � exp � �function application�
n �natural numbers�
� exp �

The abstract syntax of Mini ML is de�ned as a datatype in the signature
EXPRESSION�

Exercise �� Find and read this signature� What is the constructor corresponding
to let expressions�

The interpreter uses a typechecker to check the validity of input expressions and
an evaluator to evaluate them� Initially� the typechecker and evaluator handle
only a tiny subset of Mini ML�

The typechecker and the evaluator can be developed independently as long
as you do not change the signatures� The development of the typechecker and

the evaluator need not be in step� You can disable either by assigning false to
one of the references tc and eval�

The source of the bare interpreter is in Appendix A� An overview of how to
run the systems is provided in Appendix B�

Exercise �� Find and read the signature of the interpreter �it is called INTER�
PRETER��

We program with signatures and functors only� After the signatures� which we
shall not yet study� the �rst functor is the interpreter itself�

Exercise �� Find this functor� Find the application of Ty�prType� Find it�s type�
What do you think Ty�prType is supposed to do� What is the type of abstsyn�
What do you think the evaluator is supposed to do when asked to evaluate
something which has not yet been implemented�

We shall now describe Version �� the bare typechecker� and then proceed to the
extensions�

 Version �� The bare Typechecker

The �rst version is just able to type check integer constants and �� As signature
TYPE reveals� the type Type of types is abstract �in the sense that the construc�
tors are hidden�� but there are functions we can use to build basic types and
decompose them� unTypeInt is one of the latter� it is supposed to raise exception
Type if applied to any Mini ML type di�erent from the Mini ML integer type��

This is a common way of hiding implementation details and it might be helpful
to take a look at functor Type� which can produce a structure which matches
the signature Type� �

As revealed by the signature TYPECHECKER� the typechecker is going to
depend on the abstract syntax and a Type structure� Notice that it is possible
to specify structures in signatures as well as values and types�� Similarly� it is
possible to declare structures inside structures� such structures are called sub�
structures�� As you can see from the declaration of functor TypeChecker� all the
typechecker knows about the implementation of types is what is speci�ed by the
signature TYPE� This allows us to experiment with the implementation of types
to obtain greater e�ciency without changing the typechecker� as we shall see in
the later stages�

� In SML it is legal to use the same identi�er as an exception constructor and a
type constructor � the position of the identi�er occurrence uniquely determines the
identi�er class�

� It is also legal to use the same identi�er as a signature identi�er� a functor identi�
�er and a structure identi�er � the position of the identi�er occurrence uniquely
determines the identi�er class�

� However� it is not possible to specify functors or signatures in signatures�
� However� it is not possible to declare functors or signatures inside structures�

Exercise
� Functor TypeChecker is hostile to any expression which is not an
integer constant or a sum expression� Modify the typechecker to handle true�
false� and multiplication of integers� Make sure the revised functor compiles
and runs� Assuming that your revised version of Appendix A is stored in �le
myversion��sml� type�

map use ��myversion��sml�� �parser�sml�� �build��sml���

Once the parser has been compiled once� you can omit it from the list� However�
you have to compile the build �le after each modi�cation of your code� since the
build �le contains all the functor applications that build the system�

�� Version �� Adding lists and polymorphism

The �rst extension is to implement the type checking of lists� In Version � the
type of an expression could be inferred either directly �as in the case of true and
false�� or from the type of the subexpressions �as in the case of the arithmetic
operations�� When we introduce list� this is no longer the case� For example�
consider the expression

if ��� � ���� then � else �

Suppose we want to type check ��� � ���� by �rst type checking the left subex�
pression ��� then the right subexpression ��� and �nally checking that the left
and right�hand sides are of the same type before returning the type bool� The
problem now is that when we try to type check �� we cannot know that this
empty list is supposed to be an integer list� The typechecker therefore just as�
cribes the type �a list to ��� where �a is a �Mini ML� type variable� The ��� of
course turns out to be an int list� The typechecker now uni�es the two types
�a list and int list resulting in the substitution that maps �a to int� Hence
the type of the expression �� depends not just on the expression itself� but also
on the context of the expression� The context can force the type inferred for the
expression to become more speci�c�

To implement all this� we �rst extend the TYPE signature and introduce a
new signature� UNIFY� as shown in Figure ��

The nice thing is that we can extend the typechecker without knowing any�
thing about the inner workings of uni�cation� simply by including a formal pa�
rameter of signature UNIFY in the typechecker functor� The complete functor
is in the �le version�sml� but the most important bits are shown in Figure ��

Here we see a new form of sharing constraint� namely sharing between struc�
tures� In SML 	� this speci�es that when the functor is applied to actual struc�
tures Ty and Unify� it must be the case that Ty is the same substructure as the
Type�substructure of Unify� This of course implies that types that are speci�ed
in both Ty and Unify�Type are shared as well� e�g�� we have the type equality
Ty�Type � Unify�Type�Type� In SML 	�� structure sharing has a weaker seman�
tics� there is no notion of identity of structure� structure sharing constraints are
still allowed� but they just abbreviate a sequence of type sharing constraints�

signature TYPE �

sig

eqtype tyvar

val freshTyvar	 unit �� tyvar

�
��� components omitted ���
�

val mkTypeTyvar	 tyvar �� Type

and unTypeTyvar	 Type �� tyvar

val mkTypeList	 Type �� Type

and unTypeList	 Type �� Type

type subst

val Id	 subst

�
the identify substitution�
�

val mkSubst	 tyvar
Type �� subst

�
make singleton substitution�
�

val on 	 subst
 Type �� Type

�
application
�

val prType	 Type��string

�
printing
�

end

signature UNIFY�

sig

structure Type	 TYPE

exception NotImplemented of string

exception Unify

val unify	 Type�Type
 Type�Type ��

Type�subst

end�

Fig� �� Signatures TYPE and UNIFY

We also have to extend the Type functor to meet the enriched TYPE signa�
ture� see Figure ��

Exercise � Extend the typechecker of Version � to handle equality�

functor TypeChecker

� �
���
�

structure Ty	 TYPE

structure Unify	 UNIFY

sharing Unify�Type � Ty

��

struct

infix on

val �op on� � Ty�on

�
���
�

fun tc �exp	 Ex�Expression�	 Ty�Type �

�case exp of

�
���
�

� Ex�LISTexpr �� ��

let val new � Ty�freshTyvar��

in Ty�mkTypeList�

Ty�mkTypeTyvar new�

end

� Ex�CONSexpr�e��e�� ��

let

val t� � tc e�

val t� � tc e�

val new � Ty�freshTyvar ��

val newt� Ty�mkTypeTyvar new

val t�� � Ty�mkTypeList newt

val S� �

Unify�unify�t�� t���

handle Unify�Unify ��

raise TypeError�e��

�expected list type��

val S� �

Unify�unify�S� on newt�

S� on t��

handle Unify�Unify ��

raise TypeError�exp�

�element and list have di�erent types��

in S� on �S� on t��

end

�handle Unify�NotImplemented msg ��

raise NotImplemented msg

end� �
TypeChecker
�

Fig� �� The TypeChecker functor

functor Type��	TYPE �

struct

type tyvar � int

val freshTyvar �

let val r� ref �

in fn�����r	� 	r
�� 	r�

end

datatype Type � INT

� BOOL

� LIST of Type

� TYVAR of tyvar

fun mkTypeTyvar tv � TYVAR tv

and unTypeTyvar�TYVAR tv� � tv

� unTypeTyvar � raise Type

fun mkTypeList�t��LIST t

and unTypeList�LIST t�� t

� unTypeList� �� raise Type

type subst � Type �� Type

fun Id x � x

fun mkSubst�tv�ty��

let

fun su�TYVAR tv���

if tv�tv� then ty

else TYVAR tv�

� su�INT� � INT

� su�BOOL�� BOOL

� su�LIST ty�� �

LIST �su ty��

in su

end

fun on�S�t�� S�t�

fun prType � �
���
�

end�

Fig� �� The Type functor

�� Version �� A di�erent implementation of types

Version � arises from Version � by replacing the Type functor by a di�erent
implementation of types� Instead of representing substitutions as functions� Ver�
sion � implements type variables by references �pointers� so that it can perform
substitutions very e�ciently� by assignments� Here is an outline of the code��

functor ImpType���TYPE �

struct

datatype �a option �

NONE
� SOME of �a
datatype Type �
INT � BOOL

� LIST of Type
� TYVAR of tyvar
withtype tyvar �
Type option ref

fun freshTyvar�� � ref �NONE�
exception Type
fun mkTypeInt�� � INT
and unTypeInt�INT����
� ����� ��
� unTypeInt�TYVAR�ref�SOME t����

unTypeInt t
� unTypeInt � raise Type

�������
type subst � unit
val Id � ���

exception MkSubst�
fun mkSubst�tv�ty��
case tv of
ref�NONE� �� tv�� �SOME ty�

� ref�SOME t� �� raise MkSubst
fun on�S�t�� t
fun prType � ����� ��

end�

Exercise �� You will �nd the prType operation in ImpType in Version � rather
unsatisfactory� make modi�cations to correct this� �Hint� do not change anything
but the functor��

� The withtype construct declares a type abbreviation within a datatype declaration�

�� Version �� Introducing variables and let

We now extend Version � by implementing the type checking of let expressions
and of identi�ers�

The typechecker function tc now has to take two arguments�

tc�TE� e�

where e is an expression and TE is a type environment� which maps variables
occurring free in e to type schemes� The de�nition of what a type scheme is will
be given below� for now it su�ces to know that every type can be regarded as a
type scheme�

To take an example� if TE maps x to int and y to int� then tc will deduce
the Mini ML type int for the expression x�y� However� if TE mapped y to bool�
there would be a type error�

The fact that we can bind variables to expressions whose types have been
inferred to contain type variables means that we get type variables in the type
environment� For instance� to type check

let x � �� in � �� x end

we �rst check �� yielding the type �a� list� say� Then we bind x to the type
scheme � �a���a� list� Here the binding � �a� of �a� indicates that when we
look up the the type of x in the type environment� we return a type obtained
from the type scheme � �a���a� list by instantiating the bound variables �here
just �a�� by fresh type variables� In our example� when we look up x in the type
environment during the checking of � �� x� we instantiate �a� to a fresh type
variable �a� say� yielding the type �a list for x� Thus we get to unify int

list against �a list� yielding the substitution of int for �a�
Throughout the body of the let� x will be bound to � �a���a� list in the

type environment� Since we take a fresh instance of this type scheme each time
we look up x� we can use x both as an int list and as an int list list� say�

let x � �� in ����x���x end

Exercise ��� Assuming that you instantiate the bound �a� to �a� when you
meet the last occurrence of x� what two types should be uni�ed� and what is the
resulting substitution on �a� �

In ML� a type scheme always takes the form ��� � � ��n�� � �n � ��� where
��� � � � � �n are type variables and � is a type not containing quanti�ers� In the
fragment of MiniML considered so far� all type schemes inferred by the algorithm
will be closed �i�e�� any type variable occurring in � is amongst the ��� � � � � �n��
but when one introduces functions and application� this no longer is the case�

Exercise ��� Extend the type checker �Version �� to handle conditionals and
equality�

Exercise �	 For the extra keen� Extend Version � to cope with lambda abstrac�
tion �fn� and application� First� you have to introduce arrow types with con�
structors and destructors� Then you have to change the type of close so that it
takes two arguments� namely a type environment and a type� It should return
the type scheme that is obtained by quantifying all the type variables that occur
in the type but do not occur free in the type environment�

Then you can modify the type checker� When you type check a lambda
abstraction� you just bind the formal parameter to the trivial type scheme which
is just a fresh type variable �no quanti�ed variables�� Thus the type environment
can now contain type schemes with free type variables�

An application tc�TE�e� now yields two arguments� namely a type t and
a substitution S� the idea is that if you apply the substitution S to the type
environment TE� which now can contain free type variables� the expression e

has the type t� When an expression consists of more than one subexpression�
the type environment gradually becomes more and more speci�c by applying
the substitutions produced by the checking of the subexpressions one by one�
Moreover� the substitution returned from the whole expression is the composition
of these individual substitutions� �You have to extend the TYPE signature �and
the Type functor� with composition of substitutions�

Finally� you can extend the uni�cation algorithm to cope with arrow types�
�This will also use composition of substitutions��

Exercise ��� Finally� extend type type checker �Version �� to handle recursive
functions� In let rec f � e� in e� end� e� must be a lambda abstraction and
the typing rule is

TE � ff �� �g � e� � �
TE � ff �� close�TE � � �g � e� � � �

TE � let rec f � e� in e� end � � �

�� Acknowledgements

The parser and evaluator are due to Nick Rothwell�

�� Further Reading

The De�nition of Standard ML�MTH	�� de�nes Standard ML formally� It is ac�
companied by a Commentary�MT	��� Milner�s report on the Core
Language�Mil���� MacQueen�s modules proposal�Mac��� and Harper�s I�O pro�
posal were uni�ed in�RHM����

Several books on Computer Programming� using Standard ML as a pro�
gramming language� are available�kW�
�Rea�	�Pau	��Sta	��CMP	��� In addi�
tion� there are medium�length introductions�Har���Tof�	��

Compilation techniques are treated by Appel�App	��� In this note we have
used bits of The Edinburgh Standard ML Library�Ber	���

There is a large body of research papers related to ML� none of which we
will cite on this occasion�

References

�App�
� Andrew W� Appel� Compiling with Continuations� Cambridge University
Press� ��
�

�Ber�� Dave Berry� The Edinburgh SML Library� Technical Report ECS�LFCS���
��� Laboratory for Foundations of Computer Science� Department of Com�
puter Science� Edinburgh University� April ���

�CMP��� Chris Clarck Colin Myers and Ellen Poon� Programming with Standard ML�
Prentice Hall� ����

�Har��� Robert Harper� Introduction to Standard ML� Technical Report ECS�LFCS�
����� Dept� of Computer Science� University of Edinburgh� ����

�kW��� �Ake Wikstr�om� Functional Programming Using Standard ML� Series in Com�
puter Science� Prentice Hall� ����

�Mac��� D� MacQueen� Modules for Standard ML� In Conf� Rec� of the ��� ACM

Symp� on LISP and Functional Programming� pages ���
��� Aug� ����
�Mil��� Robin Milner� The Standard ML Core language� Technical Report CSR�

������ Dept� of Computer Science� University Of Edinburgh� October ����
Also in�RHM����

�MT�� Robin Milner and Mads Tofte� Commentary on Standard ML� MIT Press�
���

�MTH��� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard

ML� MIT Press� ����
�Pau�� Laurence C� Paulson� ML for the Working Programmer� Cambridge Univer�

sity Press� ���
�Rea��� C� Reade� Elements of Functional Programming� Addison�Wesley� ����
�RHM��� David MacQueen Robert Harper and Robin Milner� Standard ML� Techni�

cal Report ECS�LFCS����
� Dept� of Computer Science� University Of Edin�
burgh� March ����

�Sta�
� Ryan Stansifer� ML Primer� Prentice Hall� ��
�
�Tof��� Mads Tofte� Four lectures on Standard ML� LFCS Report Series ECS�

LFCS������� Laboratory for Foundations of Computer Science� Department
of Computer Science� Edinburgh University� May�eld Rd�� EH� �JZ Edin�
burgh� U�K�� March ����

Appendix A� The bare Interpreter Version ��

�� interp��sml� Mini ML interpreter� VERSION � ��

signature INTERPRETER�

sig

val interpret� string �� string

val eval� bool ref

and tc � bool ref

end�

�� syntax ��

signature EXPRESSION �

sig

datatype Expression �

SUMexpr of Expression � Expression �

DIFFexpr of Expression � Expression �

PRODexpr of Expression � Expression �

BOOLexpr of bool �

EQexpr of Expression � Expression �

CONDexpr of Expression � Expression � Expression �

CONSexpr of Expression � Expression �

LISTexpr of Expression list �

DECLexpr of string � Expression � Expression �

RECDECLexpr of string � Expression � Expression �

IDENTexpr of string �

LAMBDAexpr of string � Expression �

APPLexpr of Expression � Expression �

NUMBERexpr of int

end

�� parsing ��

signature PARSER �

sig

structure E� EXPRESSION

exception Lexical of string

exception Syntax of string

val parse� string �� E�Expression

end

�� environments ��

signature ENVIRONMENT �

sig

type �object Environment

exception Retrieve of string

val emptyEnv� �object Environment

val declare� string � �object � �object Environment ��

�object Environment

val retrieve� string � �object Environment �� �object

end

�� evaluation ��

signature VALUE �

sig

type Value

exception Value

val mkValueNumber� int �� Value

and unValueNumber� Value �� int

val mkValueBool� bool �� Value

and unValueBool� Value �� bool

val ValueNil� Value

val mkValueCons� Value � Value �� Value

and unValueHead� Value �� Value

and unValueTail� Value �� Value

val eqValue� Value � Value �� bool

val printValue� Value �� string

end

signature EVALUATOR �

sig

structure Exp� EXPRESSION

structure Val� VALUE

exception Unimplemented

val evaluate� Exp�Expression �� Val�Value

end

�� type checking ��

signature TYPE �

sig

type Type

��constructors and decstructors��

exception Type

val mkTypeInt� unit �� Type

and unTypeInt� Type �� unit

val mkTypeBool� unit �� Type

and unTypeBool� Type �� unit

val prType� Type��string

end

signature TYPECHECKER �

sig

structure Exp� EXPRESSION

structure Type� TYPE

exception NotImplemented of string

exception TypeError of Exp�Expression � string

val typecheck� Exp�Expression �� Type�Type

end�

�� the interpreter��

functor Interpreter

�structure Ty� TYPE

structure Value � VALUE

structure Parser� PARSER

structure TyCh� TYPECHECKER

structure Evaluator�EVALUATOR

sharing Parser�E � TyCh�Exp � Evaluator�Exp

and TyCh�Type � Ty

and Evaluator�Val � Value

�� INTERPRETER�

struct

val eval� ref false �� toggle for evaluation ��

and tc � ref true �� toggle for type checking ��

fun interpret�str��

let val abstsyn� Parser�parse str

val typestr� if �tc then Ty�prType�TyCh�typecheck abstsyn�

else ��disabled��

val valuestr� if �eval then

Value�printValue�Evaluator�evaluate abstsyn�

else ��disabled��

in valuestr � � � � � typestr

end

handle Evaluator�Unimplemented ��

�Evaluator not fully implemented�

� TyCh�NotImplemented msg ��

�Type Checker not fully implemented � � msg

� Value�Value �� �Run�time error�

� Parser�Syntax msg �� �Syntax Error� � � msg

� Parser�Lexical msg�� �Lexical Error� � � msg

� TyCh�TypeError���msg��� �Type Error� � � msg

end�

�� the evaluator ��

functor Evaluator

�structure Expression� EXPRESSION

structure Value� VALUE��EVALUATOR�

struct

structure Exp� Expression

structure Val� Value

exception Unimplemented

local

open Expression Value

fun evaluate exp �

case exp

of BOOLexpr b �� mkValueBool b

� NUMBERexpr i �� mkValueNumber i

� SUMexpr�e�� e� ��

let val e�� � evaluate e�

val e� � evaluate e

in

mkValueNumber�unValueNumber e��

� unValueNumber e��

end

� DIFFexpr�e�� e� ��

let val e�� � evaluate e�

val e� � evaluate e

in

mkValueNumber�unValueNumber e��

� unValueNumber e��

end

� PRODexpr�e�� e� ��

let val e�� � evaluate e�

val e� � evaluate e

in

mkValueNumber�unValueNumber e��

� unValueNumber e��

end

� EQexpr � �� raise Unimplemented

� CONDexpr � �� raise Unimplemented

� CONSexpr � �� raise Unimplemented

� LISTexpr � �� raise Unimplemented

� DECLexpr � �� raise Unimplemented

� RECDECLexpr � �� raise Unimplemented

� IDENTexpr � �� raise Unimplemented

� LAMBDAexpr � �� raise Unimplemented

� APPLexpr � �� raise Unimplemented

in

val evaluate � evaluate

end

end�

�� the type checker ��

functor TypeChecker

�structure Ex� EXPRESSION

structure Ty� TYPE��

struct

structure Exp � Ex

structure Type � Ty

exception NotImplemented of string

exception TypeError of Ex�Expression � string

fun tc �exp� Ex�Expression�� Ty�Type �

case exp of

Ex�BOOLexpr b �� raise NotImplemented ��bool const��

� Ex�NUMBERexpr � �� Ty�mkTypeInt��

� Ex�SUMexpr�e��e� �� checkIntBin�e��e�

� Ex�DIFFexpr�e��e� �� raise NotImplemented ��minus��

� Ex�PRODexpr�e��e� �� raise NotImplemented ��multiplication��

� Ex�LISTexpr � �� raise NotImplemented ��lists��

� Ex�CONSexpr � �� raise NotImplemented ��lists��

� Ex�EQexpr � �� raise NotImplemented ��equality��

� Ex�CONDexpr � �� raise NotImplemented ��conditional��

� Ex�DECLexpr � �� raise NotImplemented ��declaration��

� Ex�RECDECLexpr � �� raise NotImplemented ��rec decl��

� Ex�IDENTexpr � �� raise NotImplemented ��identifier��

� Ex�LAMBDAexpr � �� raise NotImplemented ��function��

� Ex�APPLexpr � �� raise NotImplemented ��application��

and checkIntBin�e��e� �

let val t� � tc e�

val � � Ty�unTypeInt t�

handle Ty�Type�� raise TypeError�e��

�expected int��

val t � tc e

val � � Ty�unTypeInt t

handle Ty�Type�� raise TypeError�e�

�expected int��

in Ty�mkTypeInt��

end�

val typecheck � tc

end� ��TypeChecker��

�� the basics �� nullary functors ��

functor Type���TYPE �

struct

datatype Type � INT

� BOOL

exception Type

fun mkTypeInt�� � INT

and unTypeInt�INT����

� unTypeInt���� raise Type

fun mkTypeBool�� � BOOL

and unTypeBool�BOOL����

� unTypeBool���� raise Type

fun prType INT � �int�

� prType BOOL� �bool�

end�

functor Expression��� EXPRESSION �

struct

type �a pair � �a � �a

datatype Expression �

SUMexpr of Expression pair �

DIFFexpr of Expression pair �

PRODexpr of Expression pair �

BOOLexpr of bool �

EQexpr of Expression pair �

CONDexpr of Expression � Expression � Expression �

CONSexpr of Expression pair �

LISTexpr of Expression list �

DECLexpr of string � Expression � Expression �

RECDECLexpr of string � Expression � Expression �

IDENTexpr of string �

LAMBDAexpr of string � Expression �

APPLexpr of Expression � Expression �

NUMBERexpr of int

end�

functor Value��� VALUE �

struct

type �a pair � �a � �a

datatype Value � NUMBERvalue of int �

BOOLvalue of bool �

NILvalue �

CONSvalue of Value pair

exception Value

val mkValueNumber � NUMBERvalue

val mkValueBool � BOOLvalue

val ValueNil � NILvalue

val mkValueCons � CONSvalue

fun unValueNumber�NUMBERvalue�i�� � i �

unValueNumber��� � raise Value

fun unValueBool�BOOLvalue�b�� � b �

unValueBool��� � raise Value

fun unValueHead�CONSvalue�c� ��� � c �

unValueHead��� � raise Value

fun unValueTail�CONSvalue��� c�� � c �

unValueTail��� � raise Value

fun eqValue�c�� c� � �c� � c�

�� Pretty�printing ��

fun intToString�i�int�� �if i
� then � �� else ����

natToString �abs i�

and natToString�n�int��

let val d � n div �� in

if d � � then chr�ord��� � n�

else natToString�d�� chr�ord��� � �n mod ����

end

fun printValue�NUMBERvalue�i�� � intToString�i� �

printValue�BOOLvalue�true�� � �true� �

printValue�BOOLvalue�false�� � �false� �

printValue�NILvalue� � ���� �

printValue�CONSvalue�cons�� �

��� � printValueList�cons� � ���

and printValueList�hd� NILvalue� � printValue�hd� �

printValueList�hd� CONSvalue�tl�� �

printValue�hd� � �� � � printValueList�tl� �

printValueList��� � raise Value

end�

Appendix B� Files

The following �les are available�

Part �

� examples�sml The examples from Part �

Part �

� interp��sml Version � �as included in Appendix A��
� interp�sml � � � interp��sml The other versions�
� build��sml the structure declarations needed to build Version ��
� build�sml � � � build��sml Similarly for the other versions�
� parser�sml The parser functor�

To build Version �� say� you type the following �assuming you have copied the
�les to your directory��

use �interp��sml��

use �parser�sml��

use �build��sml��

Since the parser functor is completely closed� you don�t have to include it more
than once in every session� although you will probably want to build your system
several times while you experiment with the extensions�

This article was processed using the LaTEX macro package with LLNCS style

