
CMSC 22610
Winter 2005

Implementation
of

Computer Languages

Project 4
March 1

MLR interpretation
Due: March 17

1 Introduction

The final part of the project is to implement a code generator for MLR. The target for this code
generator is a stack-based interpreter, which is described below.

2 The MLR virtual machine

In this section, we describe the MLR virtual machine (VM). The virtual machine is a stand-alone
program that takes an executable file and runs it. An VM executable consists of a code sequence, a
literal table that contains string literals, and a C function table that contains runtime system functions
used to implement services such as I/O.

2.1 Values

The VM supports three types of values: 31-bit tagged integers, 32-bit pointers to heap-allocated
records of values, and 32-bit pointers to strings. A integer valuen is represented by2n + 1 in the
VM (this tagging is required for the garbage collector). The VM takes care of tagging/untagging,
so the only impact of this representation on your code generator is that integer literals must be in
the range−230 to 230 − 1. We use word address for values (but byte addressing for instructions).

2.2 Registers

The MLR VM has four special registers: the stack pointer (SP), which points to the current top of
the stack; the frame pointer (FP), which points to the base of the current stack frame and is used to
access local variables; the environment pointer (EP), which points to the current closure object and
is used to access global variables; and the program counter (PC), which points to the next instruction
to execute.

2.3 Instructions

We define the semantics of the instructions using the following notation

· · · α instr =⇒ · · · β



which means that the instructioninstr takes a stack configuration withα on the top and maps it
to a stack withβ on the top. The instructions are organized by kind in the following description.

Arithmetic instructions

· · · i1 i2 add =⇒ · · · (i1 + i2)
pops the top two integers, adds them and pushes the result.

· · · i1 i2 sub =⇒ · · · (i1 − i2)
pops the top two integers, subtracts them and pushes the result.

· · · i1 i2 mul =⇒ · · · (i1 × i2)
pops the top two integers, multiplies them and pushes the result.

· · · i1 i2 div =⇒ · · · (i1/i2)
pops the top two integers, divides them, and pushes the result. The result is undefined ifi2 is
zero.

· · · i1 i2 mod =⇒ · · · i1 mod i2
pops the top two integers, divides them, and pushes the remainder. The result is undefined if
i2 is zero.

· · · i neg =⇒ · · · − i
pops the integer on the top of the stack and pushes its negation.

· · · v1 v2 equ =⇒ · · · b
pops and compares the two values on top of the stack. If they are equal, then it pushes1,
otherwise it pushes0. Note that if the values are pointers, then the comparison pushes true if
the pointers are equal

· · · v1 v2 less =⇒ · · · b
pops and compares the two integers on top of the stack. Ifv1 < v2, then it pushes1, otherwise
it pushes0.

· · · v1 v2 lesseq =⇒ · · · b
pops and compares the two integers on top of the stack. Ifv1 ≤ v2, then it pushes1, otherwise
it pushes0.

· · · v not =⇒ · · · b
popsv and pushes1, if v = 0, and otherwise pushes0.

Heap instructions

· · · v0 · · · vn−1 alloc( n) =⇒ · · · 〈v0, . . . , vn−1〉
allocates ann element record, which is initialized from the topn stack values.

· · · 〈v0, . . . , vn−1〉 select( i) =⇒ · · · vi

pops a record off the stack and pushes the record’s ith component.

· · · 〈v1, . . . , vn−1〉 i index =⇒ · · · vi

pops a record off the stack and pushes the record’s ith component.

· · · 〈v0, . . . , vn−1〉 i v update =⇒ · · ·
replaces theith field of the record with the valuev.

2



Stack instructions

· · · int( n) =⇒ · · · n
pushes the integern onto the stack.

· · · literal( i) =⇒ · · · si

pushes a reference to theith string literal (si) onto the stack.

· · · label( l) =⇒ · · · addr
pushes the code address named by the label. Note that in the encoding of this instruction, the
code address is specified as an offset from thelabel instruction.

· · · v1 v2 swap =⇒ · · · v2 v1

swaps the top two stack elements.

· · · v0 v1 · · · vn−1 vn swap( n) =⇒ · · · vn v1 · · · vn−1 v0

swaps the top stack element with then’th from the top. All other stack elements are un-
changed.

· · · vn · · · v0 push( n) =⇒ · · · vn · · · v0 vn

pushes thenth element from the top of the stack.

· · · v pop =⇒ · · ·
pops and discards the top stack element.

· · · v1 · · · vn pop( n) =⇒ · · ·
pops and discards the topn stack elements.

· · · loadlocal( n) =⇒ · · · v
fetches the value (v) in the word addressed by FP+ n and pushes it on the stack.

· · · v storelocal( n) =⇒ · · ·
popsv off the stack and stores it in the word addressed by FP+ n.

· · · loadglobal( n) =⇒ · · · v
fetches the value (v) in the word addressed by EP+ n and pushes it on the stack.

· · · pushep =⇒ · · · ep
push the current contents of the EP on the stack.

· · · ep popep =⇒ · · ·
pop a value from the stack and store it in the EP.

Control-flow instructions

· · · jmp( n) =⇒ · · ·
transfer control to instruction PC+ n.

· · · b jmpif( n) =⇒ · · ·
popsb off the stack and ifb 6= 0 it transfers control to instruction PC+ n.

· · · call =⇒ · · · pc
pushes the current PC value (which will be the address of the next instruction) and transfers
control toaddr , where the current value of the EP is〈addr , . . . 〉.

3



· · · entry( n) =⇒ · · · fp w1 · · · wn

pushes the current value of the FP register and sets FP to SP. Then it allocatesn uninitialized
words on the stack.

· · · pc fp · · · v ret =⇒ · · ·
resets the stack pointer to the frame-pointer; pops the saved FP into the FP register, pops the
return PC, and then jumps to the return address.

· · · pc fp · · · v tailcall =⇒ · · · pc
pops the current frame off the stack (likeret ) and then transfers control toaddr , where the
current value of the EP is〈addr , . . . 〉. Unlike thecall instruction, this instruction does not
push the return PC.

· · · args ccall( n) =⇒ · · · v
Calls thenth C function. The C function will pop its arguments from the stack and push its
result.

Miscellaneous instructions

· · · nop =⇒ · · ·
no operation.

· · · halt =⇒ · · ·
halts the program.

3 Calling conventions

An MLR function call is implemented using a four-part protocol:

1. The caller evaluates the function and argument expressions from left to right and pushes the
results onto the stack. Then aswap instruction is used to get the function closure on top of
the stack. The closure is loaded into the EP register using thepopep instruction. Then the
function is called (using thecall ) instruction, which has the effect of pushing the address
of the following instruction on the stack.

2. The first instruction in the function is anentry instruction, which pushes the frame-pointer,
sets the new frame pointer to point to the top of the stack, and then allocates space for locals.

3. When the callee is finished and the return result is on the top of the stack, it stores the result at
the location of the argument (immediately below the return PC) and then executes aret in-
struction, which deallocates the local variable space, restores the frame pointer, and transfers
control to the return address.

4. When control is returned to the address following thecall , the caller must save the return
result, which will be on top of the stack.

There are two important variations on this protocol. The first is when a function calls itself. In that
case, the EP already holds the closure and does not have to be set. The second case is when the
function call is atail call, i.e., the last action a function takes before returning. Tail calls are used to
implement looping in functional languages The VM has a specialtailcall operator that discards
the caller’s stack frame and does not push the return PC.

4



3.1 An example

To illustrate the VM, consider the following MLR implementation of the factorial function:

fun fact (n : int) : int in
if (n <= 0) then 1 else n * fact(n-1)

This function has one argument (n) and no local variables. The argumentn will be located at+4
from the frame pointer, whilei is at−2 andp is at−4 from the frame pointer. The VM code for
this function is given in Figure 1 (we assume that the code is located at address 100). Consider a

Address Instruction Comment
100 : entry (0)
102 : loadlocal (2) pushn
104 : int (0)
106 : lesseq is (n < 0) ?
107 : jmpif (11) jump to120
109 : loadlocal (2) pushn
111 : loadlocal (2) pushn
113 : int (1)
115 : sub
116 : call self-recursive call offact
117 : mul
118 : jmp(2) jump to122
120 : int (1)
122 : storelocal (2) save result in argument position
124 : ret

Figure 1: AVM code for factorial function

non-tail call of the factorial function

fact x

This will produce the following code sequence:

loadlocal (fact)
loadlocal (x)
swap
popep
call

Here we have assumed thatfact andx are local variables and we have used their names to refer
to their offsets.

3.2 Submission

Your CVS repository will be seeded with CVS modules for each of the projects. For this project,
the CVS module is namedproject-4 and contains the sample scanner, parser, and typechecker
implementation. We will also provide a code generation API. We will collect the projects at 12
midnight on Thursday March 17th from the repositories, so make sure that you have committed
your final version before then.

5



4 Document history

Mar. 1 Original version.

Mar. 2 Added missingupdate operation.

Mar. 3 Changed the semantics ofret andtailcall , and added thepush instruction.

Mar. 11 Changed documentation ofccall instruction.

6


