
CMSC 22610
Winter 2005

Implementation
of

Computer Languages

Project 3
February 8, 2005

MLR typechecker
Due: February 25, 2005

1 Introduction

The third part of the project is to implement a typechecker for MLR. The typechecker is responsible
for checking that a given program isstatically correct. The typechecker takes a parse tree (as pro-
duced by your parser) as input and produces atyped abstract syntax tree(AST). The AST includes
information about the types and binding sites of variables. We will provide a sample scanner and
parser, but you may also use your solution to Part 2.

The bulk of this document is a formal specification of the typing rules for MLR. To keep the for-
mal notation simpler, we give the rules for thefunctionalsubset of MLR. In Section 6, we informally
explain how these rules should be extended for mutable record fields.

MLR supports a simple form of record subtyping in that a function that takes a record argument
can be given a record with additional fields. For example, the function

fun xCoord (r : {x : int }) : int = r.x

can be applied to any record value that has an integerx field.

2 MLR types

MLR types are eitherbase types, such asint andbool , function types, list types, record types,
or index types. The source language allows type declarations, but we replace these with their right-
hand sides during typechecking.1 The abstract syntax of types is given in Figure 1. We useι to
denote base types,τ1 → τ2 to denote a function type, andτ list for lists. A record type is denoted
by { l : τl

l∈L} , whereL is the finite set of labels in the record. Note that we omit mutable fields
from this definition. We do this to keep the notation simple, but issues related to extending the
system to imperative types are discussed in Section 6 below.

3 Typed AST

The abstract syntax of MLR programs is simplified from the concrete syntax specified for Project 2.
A program is represented as a list of function declarations (type declarations are folded into the type

1In practice, one might note the occurrences of these type names so as to produce better error messages.

τ ::= ι
| τ1 → τ2

| τ list
| { l : τl

l∈L}

Figure 1: MLR types

p ::= d
| d p

d ::= fun f (x1 : τ1) · · · (xn : τn) : τ = e

e ::= let x : τ = e1 in e2

| fun f (x1 : τ1) · · · (xn : τn) : τ = e1 in e2

| if e1 then e2 else e3

| (e1 e2)
| p(e1, e2)
| p(e)
| nilτ
| e.l

| { l = el
l∈L}

| e1; . . . ; en

| x
| b

Figure 2: MLR abstract syntax

environment).

4 Typing rules

The typing rules for MLR provide both a specification for static correctness of MLR programs, as
well as defining a translation from the parse tree to the AST representation.

4.1 Environments

The MLR typing rules are defined with respect to type and value environments. These environments
are finite maps from type and value variables to types. We useTE to denote a type environment and
VE to denote a value environment. We define the extension of an environmentE by a binding ofa
to τ as

E±{a 7→ τ}(b) =
{

τ whena = b
E(b) whena 6= b

2

4.2 Types

The typing rules for types check types for well-formedness and translate the concrete syntax of
types into the abstract syntax. The judgment form is

TE ` Type ⇒ τ

which should be read as: in the type environmentTE, the type expressionType is well-formed and
translates to the abstract typeτ . Typechecking a type identifier replaces it with its definition.

tid ∈ dom(TE) TE(tid) = ι

TE ` tid ⇒ ι

TE ` Type1 ⇒ τ1 TE ` Type2 ⇒ τ2

TE ` Type1-> Type2 ⇒ τ1 → τ2

TE ` Type ⇒ τ

TE ` Type list ⇒ τ list

Record types must have disjoint fields (i.e., the same label cannot appear twice).

l1 . . . , ln are disjoint TE ` Typei ⇒ τli for 1 ≤ i ≤ n

TE ` { l1 : Type1, . . . , ln : Typen} ⇒ { l : τl
l∈{l1 ..., ln}}

We call the empty record type ({ }) the “unit” type.

4.3 Subtyping

MLR supports simple record subtyping. This system is specified in the following rules. The first
rule states that any type is a subtype of itself.

τ <: τ

A list type is a subtype of another list type, if the elements types are in the subtyping relation:

σ <: τ

σ list <: τ list

Function types havecontra-variantsubtyping for the argument type andco-variantsubtyping in the
result position:

σ2 <: σ1 τ1 <: τ2

σ1 → τ1 <: σ2 → τ2

Record types obey what is known aswidthsubtyping, which means that one record type is a subtype
of another if it has all the same fields (with the same types) and possibly others.

L′ ⊆ L
{ l : τl

l∈L} <: { l : τl
l∈L′

}

3

4.4 Expression typing

The expression typing judgment has the form

TE,VE ` Exp ⇒ e : τ

which states that in the environmentsTE andVE, the expressionExp translates to the AST terme
and has typeτ . The rule forlet bindings extends the value environment with the new binding in
the body of thelet .

TE ` Type ⇒ τ TE,VE ` Exp1 ⇒ e1 : τ1 τ1 <: τ TE,VE±{x 7→ τ} ` Exp2 ⇒ e2 : τ2

TE,VE ` let x : Type = Exp1 in Exp2 ⇒ let x : τ = e1 in e2 : τ2

Because functions may be recursive, we extend the value environment with their type when checking
their body.

TE ` Type1 ⇒ σ1 · · · TE ` Typen ⇒ σn TE ` Type ⇒ τ
VE′ = VE±{f 7→ σ1 → · · · → σn → τ}

TE,VE′±{xi 7→ σi | 1 ≤ i ≤ n} ` Exp1 ⇒ e1 : τ1 τ1 <: τ
TE,VE′ ` Exp2 ⇒ e2 : τ2

TE,VE ` fun f (x1 : Type1) · · · (xn : Typen) : Type = Exp1 in Exp2

⇒ fun f (x1 : σ1) · · · (xn : σn) : τ = e1 in e2 : τ2

The rule for conditionals requires that both arms have the same type.

TE,VE ` Exp1 ⇒ e1 : bool TE,VE ` Exp2 ⇒ e2 : τ TE,VE ` Exp3 ⇒ e3 : τ

TE,VE ` if Exp1 then Exp2 else Exp3 ⇒ if e1 then e2 else e3 : τ

Function application allows a function to be applied to a subtype of its argument type.

TE,VE ` Exp1 ⇒ e1 : σ → τ TE,VE ` Exp2 ⇒ e2 : σ′ σ′ <: σ

TE,VE ` Exp1 Exp2 ⇒ (e1 e2) : τ

Field selection requires that the expression have a field with the given label.

TE,VE ` Exp ⇒ e : σ σ <: { l : τ }

TE,VE ` Exp. l ⇒ e.l : τ

Record-value construction requires that the fields be disjoint.

l1 . . . , ln are disjoint TE,VE ` Expi ⇒ eli : τli for 1 ≤ i ≤ n

TE,VE `⇒ { l = el
l∈{l1 ..., ln}} : { l : τl

l∈{l1 ..., ln}}

The equality operator requires that its arguments have the same type:

TE,VE ` Exp1 ⇒ e : τ TE,VE ` Exp2 ⇒ e : τ τ admits equality
TE,VE ` Exp1 == Exp2 ⇒ ==τ (e1, e2) : bool

The list-cons operator is annotated with the list-element type in the abstract syntax.

TE,VE ` Exp1 ⇒ e : τ TE,VE ` Exp2 ⇒ e : τ list
TE,VE ` Exp1 :: Exp2 ⇒ :: τ (e1, e2) : τ list

4

The other binary operators are translated with help of an auxiliaryTypeOf function that gives their
signature:

TE,VE ` Exp1 ⇒ e : τ1 TE,VE ` Exp2 ⇒ e : τ2 TypeOf(bop) = (τ1 × τ2) → τ

TE,VE ` Exp1 bop Exp2 ⇒ bop(e1, e2) : τ

The empty list ispolymorphic, so it can have any type. We annotate the AST with the item type.

TE,VE ` [] ⇒ nilτ : τ list

Expression sequencing requires that the l.h.s. of a “; ” have unit type.

TE,VE ` Expi ⇒ ei : τi for 1 ≤ i ≤ n τi = { } for 1 ≤ i < n

TE,VE ` Exp1 ; . . . ; Expn ⇒ e1; . . . ; en : τn

The type of a variable is determined by its binding in the value environment.

x ∈ dom(VE) VE(x) = τ

TE,VE ` x ⇒ x : τ

We use the auxiliary functionTypeOf to map literals to their types (i.e., bool, int, andstring).

TypeOf(b) = τ

TE,VE ` b ⇒ b : τ

One important property of this type system is that it does not supportsubsumptionat any point;
only at type constraints, function applications, and record field selections. Thus, even though{ x :
int} <: { } , the following code is not type correct:

(x = 1; 2)

since the first expression does not have unit type.

4.5 Operators

TheTypeOf function on operators is defined as follows:

TypeOf(<=) = (int× int) → bool

TypeOf(<) = (int× int) → bool

TypeOf(+) = (int× int) → int

TypeOf(-) = (int× int) → int

TypeOf(*) = (int× int) → int

TypeOf(/) = (int× int) → int

TypeOf(%) = (int× int) → int

TypeOf(unary-) = int → int

TypeOf(not) = bool → bool

TypeOf(isnull) = τ list → bool

TypeOf(hd) = τ list → τ

TypeOf(tl) = τ list → τ list

Note that the list operators are really a family of operators and should be typechecked in a way that
is similar to the rule for:: .

5

4.6 Declaration typing

An MLR program consists of a sequence of type and function declarations. We require that the last
declaration be a function declaration defining themain function. Typechecking these declarations
has the result of adding new bindings to the type and value environments. In the case of a function
declaration, there is also a resulting AST representation. The judgment forms for declarations and
programs are

TE,VE ` Prog ⇒ p
TE,VE ` Dcl ⇒ d : TE′,VE′

Type declarations extend the type environment, but do not yield a abstract syntax term.

TE ` Type ⇒ τ

TE,VE ` type t = Type ⇒ − : TE±{t 7→ τ},VE

Function declarations extend the value environment.

TE ` Type1 ⇒ σ1 · · · TE ` Typen ⇒ σn TE ` Type ⇒ τ
VE′ = VE±{f 7→ σ1 → · · · → σn → τ}

TE,VE′±{xi 7→ σi | 1 ≤ i ≤ n} ` Exp ⇒ e : τ ′ τ ′ <: τ

TE,VE ` fun f (x1 : Type1) · · · (xn : Typen) : Type = Exp
⇒ fun f (x1 : σ1) · · · (xn : σn) : τ = e : TE,VE′

The typechecking of programs just threads the environments from left to right. We adopt the con-
vention that ifd = − (i.e., theDcl is a type declaration), thend p = p.

TE,VE ` Dcl ⇒ d : VE′,TE′ TE′,VE′ ` Prog ⇒ p

TE′,VE′ ` Dcl Prog ⇒ d p

The last declaration should be themain function:

TE,VE ` Dcl ⇒ d : VE′,TE′

d = fun main (x : string list) : int = e

TE,VE ` Dcl ⇒ d

5 Derived forms

Some forms in the concrete syntax are defined in terms of a simple translation. This section de-
scribes these translations.

5.1 Functional record update

Thewith operator supports functional record update. An expression of the form

Exp with { l′=Expl′
l′∈L2}

where the type ofExp is { l : τl
l∈L1} , is translated to

let x : { l : τl
l∈L} = Exp in

{ l=x. ll∈L1\L2 , l′=Expl′
l′∈L2}

6

5.2 Conditional expressions

The operatorsandalso andorelse are translated toif expressions as follows:

Exp1 andalso Exp2 = if Exp1 then Exp2 else false

Exp1 orelse Exp2 = if Exp1 then true else Exp2

5.3 List expressions

The form[Exp1, . . . , Expn] is equivalent to

Exp1 :: · · · :: Expn :: []

6 Imperative features

Handling the imperative features of MLR requires adding mutability flags to field types and the
requirement that the mutability flags of the supertype be matched by the subtype. The typing rule
for field assignment is

TE,VE ` Exp1 ⇒ e1 : τ1 TE,VE ` Exp1 ⇒ e1 : τ2 τ1 <: { l!τ2}

TE,VE ` Exp1. l := Exp2 ⇒ e1.l := e2 : { }

7 Requirements

7.1 Errors

Your typechecker should implement the above type system and report reasonable error messages.
Errors that you should catch include (but are not limited to), use of undeclared variables (both
type and value), non-disjoint labels in record types/expressions, and type mismatches on function
applications, field selections, field assignments,etc.

7.2 Submission

We will set up a CVS repository for each student on the Computer Science server. This repository
will be seeded with CVS modules for each of the projects. For this project, the CVS module is
namedproject-3 and contains the sample scanner and parser implementation. We will also
provide the implementation of the AST representation. You should use this repository to hold the
source for your project. We will collect the projects at 12 midnight on Friday February 25th from
the repositories, so make sure that you have committed your final version before then.

8 Document history

Feb. 8 Original version.

7

