
CMSC 22610
Winter 2005

Implementation
of

Computer Languages

Project 2
January 20, 2005

MLR parser
Due: January 31, 2005

1 Introduction

Your second assignment is to implement a parser for MLR. You will use ML-Yacc to generate a
parser from an LALR(1) specification (see Chapter 3 of Appel’s book). The actions of this parser
will construct aparse treerepresentation for an MLR program. We will provide an ML-Lex based
scanner and the definition of the parse-tree representation.

2 The MLR grammar

The concrete syntax of MLR is specified by the grammar given in Figures 1 and 2. We have extended
the grammar to include mutable fields in records.

As written, this grammar is ambiguous. To make this grammar unambiguous, the precedence of
operators must be specified. The precedence of the binary operators are (from weakest to strongest):

:=
with

orelse
andalso
== <= <

::
+ -

* / %

All binary operators except “:: ” (list construction) are left associative. The next highest precedence
are the unary operators (- , not , etc.) and function application. Function application associates to
the left The highest precedence is field selection. Here are some examples:

a + b * c + d ≡ (a + (b * c)) + d
a + 1 :: b :: [] ≡ (a + 1) :: (b :: [])
f x . m + 1 ≡ (f (x . m)) + 1
f x with { x = 2 } ≡ (f x) with { x = 2 }
hd l x y ≡ ((hd l) x) y

Prog
::= TopDecl+

TopDecl
::= type tid = Type
| Function

Type
::= AtomicType-> Type
| AtomicType

AtomicType
::= bool
| int
| string
| tid
| AtomicTypelist
| { RowTypeopt }
| (Type)

RowType
::= FieldType(, FieldType)∗

FieldType
::= lid : Type
| lid ! Type

Function
::= fun vid Param+ : Type= Exp

Param
::= (vid : Type)

Figure 1: The concrete syntax of MLR (A)

2

Exp
::= let vid : Type= Exp in Exp
| Functionin Exp
| if Expthen Expelse Exp
| Expwith { RowExp}
| Exporelse Exp
| Expandalso Exp
| Exp== Exp
| Exp<= Exp
| Exp< Exp
| Exp:: Exp
| Exp+ Exp
| Exp- Exp
| Exp* Exp
| Exp/ Exp
| Exp%Exp
| - Exp
| not Exp
| isnull Exp
| hd Exp
| tl Exp
| Exp Exp
| Exp. lid
| Exp! lid
| Exp! lid := Exp
| true
| false
| num
| str
| vid
| (Exp(; Exp)∗)
| [(Exp(, Exp)∗)opt]
| { RowExpopt }

RowExp
::= FieldExp(FieldExp)∗

FieldExp
::= lid = Exp
| lid != Exp

Figure 2: The concrete syntax of MLR (B)

3

3 Requirements

Your implementation should consist of the following five files:

mlr.cm — a CM sources file for compiling your project.

main.sml — An SML source file containing the definition a structureMain , that defines a func-
tion

val parseFile : string -> ParseTree.program

whereParseTree.program is the type of program parse trees. This function should open
the named source file, parse it, and return the resulting tree.

parse-tree.sml — An SML file containing a moduleParseTree that defines the parse-tree
representation of MLR programs. We will provide this file.

mlr.y — An ML-Yacc specification file for parsing MLR programs. The actions of this parser
should construct parse tree nodes.

mlr.l — An ML-Lex specification file for lexing MLR. We will provide this file, but you may
modifiy it to match the terminals in your parser. You may also choose to use a modified
version of the lexer you wrote for Part 1 of the project, but it will require some restructuring
of the interface.

We will set up a CVS repository for each student on the Computer Science server. This repos-
itory will be seeded with CVS modules for each of the projects. For this project, the module is
namedproject-2 and contains the files mentioned above. You should use this repository to hold
the source for your project. We will collect the projects at 12pm on Monday January 31st from the
repositories, so make sure that you have committed your final version before then.

4 Document history

Jan. 24 Updated discussion of precedence and associativity and updated submission guidelines.
Also, changed the name ofMLRParseTree to ParseTree .

Jan. 20 Original version.

4

