
CMSC 22610
Winter 2005

Implementation
of

Computer Languages

Project 1
January 6, 2005

MLR lexer
Due: January 21, 2005

1 Introduction

Your first assignment is to implement a lexer (or scanner) for MLR, which will convert an input
stream of characters into a stream of tokens. While such programs are often best written using a
lexer generator(e.g., ML-Lex or Flex), for this assignment you will write a scanner from scratch.

2 MLR lexical conventions

MLR has four classes oftoken: identifiers, delimiters and operators, numbers, and string literals.
Tokens can be separated bywhitespaceand/orcomments.

Identifiers in MLR can be any string of letters, digits, and underscores, not beginning with a
digit. Identifiers are case-sensitive (e.g., foo is different fromFoo). The following identifiers are
reserved as keywords:

andalso bool else false fun
hd if in int isnull

let list not orelse string
then tl true type with

MLR also has a collection of delimiters and operators, which are the following:

( ) { } [ ]
== <= < :: + -
* / % = . ,
; :

Numbers in RML are integers and are their literals are written using decimal notation (without
a sign).

String literals are delimited by matching double quotes and can contain the following C-like
escape sequences:



\a — bell (ASCII code 7)
\b — backspace (ASCII code 8)
\f — form feed (ASCII code 12)
\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\v — vertical tab (ASCII code 11)
\\ — backslash
\" — quotation mark

A character in a string literal may also be specified by its numerical value using the escape sequence
‘ \ ddd,’ where ddd is a sequence of three decimal digits. Strings in MLR may contain any 8-bit
value, including embedded zeros, which can be specified as ‘\000 .’

Comments start anywhere outside a string with “(* ” and are terminated with a matching “*) ”.
As in SML, comments may be nested.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character should be treated as an
error.

3 Requirements

Your implementation should include (at least) the following two modules:

structure MLRLexer : MLR_LEXER
structure MLRTokens : MLR_TOKENS

The signature of theMLRLexer module is

signature MLR_LEXER =
sig

val lexer : ((char, ’a) StringCvt.reader)
-> (MLRTokens.token, ’a) StringCvt.reader

end

TheStringCvt.reader type is defined in the SML Basis Library as follows:

type (’item, ’strm) reader = ’strm -> (’item * ’strm) option

A reader is a function that takes a stream and returns a pair of the next item and the rest of the stream
(it returnsNONEwhen the end of the stream is reached). Thus,lexer is a function that takes a
character reader and returns a token reader.

The signature of theMLRTokens module should have the following form:

2



signature MLR_TOKENS =
sig

datatype token
= KW_andalso
| KW_bool
| KW_else
| ...
| KW_with
| LP | RP
| LCB | RCB (* ’{’ ’}’ *)
| LSB | RSB (* ’[’ ’]’ *)
| DEQ (* ’==’ *)
| LTEQ | LT
| DCOLON (* ’::’ *)
| PLUS | MINUS | TIMES | DIV | MOD
| EQ | DOT | COMMA | SEMI | COLON
| NAME of Atom.atom
| NUMBER of IntInf.int
| STRING of string

end

The tokens correspond to the various keywords, delimiters and operators, and literals. TheNAME
token is for non-reserved identifiers and carries a unique string representation of the identifier. The
NUMBERandSTRINGtokens carry the value of the literal.

3


