
CMSC 22610
Winter 2005

Computer Language Implementation Homework 6
Due March 10

1. Consider the following lexically scoped language of integer expressions:

exp ::= NUM (1)

| VAR (2)

| let VAR = exp1 in exp2 (3)

| exp1 + exp2 (4)

Give an attribute grammar that computes the value of an expression. You may assume that
NUM .value is the integer value of the numeric literal and thatVAR.name is the name of
a variable. Your solution may use functional data structures, such as sets and finite maps.

2. Consider the following representation of terms in SML:

datatype term = T of (string * term list)

where thestring is the operator name. It is possible to define strategy combinators for this
term representation, where a strategy has the type

type strategy = term -> term option

andNONEdenotes failure. For example,

fun <+ (s1, s2) t = (case s1 t
of NONE => s2 t

| someT => someT
(* end case *))

implements deterministic choice and

fun all s (T(f, args)) = let
fun try ([], l) = SOME(T(f, List.rev l))

| try (t::ts, l) = (case s t
of NONE => NONE

| SOME t’ => try(ts, t’::l)
(* end case *))

in
try (args, [])

end

implements theall combinator.

(a) Give the SML code for thetest combinator. Recall that thetest combinator acts as
the identity when its argument succeeds and fails when its argument fails.

(b) Give the SML code for a generic congruence operator with the following specification:
val congruence : (string * strategy list) -> strategy

