CMSC 22610 Computer Language Implementation Handout 6
Winter 2005 March 11, 2005

Runtime functions

1 Introduction

This handout provides further information about the interface between MLR programs and the run-
time system. The VM provides theeall instruction to invoke C functions. C functions expect
their arguments on the stack and return their result on the $t&kunctions are specified by an
index into the C function table.

2 Runtime functions

The VM provides the following runtime system functions. We present them using the same conven-
tion that we used to present the semantics of the bytecode instruction set.

-+ fid str ccall("MLR_print") — ...
prints the string to the output file specified iy. The ID 0 is used to specify output to the
standard output.

-+ fid str ccall("MLR_printLn") = --.
prints the string to the output file specified iy followed by a newline. The ID 0 is used to
specify output to the standard output.

-~ fid ccall("MLR_readLn") = ---s
reads a line of input from the input file specified fia§ and pushes it on the stack. The ID O
is used to specify input from the standard output.

-strccall("MLR_openin") = ---fid
opens the named file for input and pushes its file ID on the stack.

-strccall("MLR_openOut") = --- fid
opens the named file for output and pushes its file ID on the stack.

- str ccal("MLR_length") = -.--n
pops the stringtr and pushes its length.

-Ist ccal("MLR_concat") = .- str
pops a list of strings and pushes their concatenation.

The project handout states that “It is the responsibility of the caller to remove the arguments from the stack,” but |
have decided that it is easier to let the runtime functions pop their arguments.

-stri ccalll "MLR_sub") = --- chr

pops a string and an integer index and pushes the integer code of the character at the given

position.

-strin ccall("MLR_substring”) = .- str
pops a string {ir), integer index4), and integer lengthn(), and pushes the substring gt
that starts at positionand has: characters.

-1 ccall("MLR_intToString") = .- str
pops an integer and pushes its string representation.

If any of these functions encounters an ermg(index out of bounds), then the VM halts.

3 Wrapping C functions

As part of your bootstrap code, you will need to wrap calls to C functions inside MLR-style func-
tions. For example, the valu®.printLn names an MLR function that takes a single string
argument and prints it to the standard output. The code for this function is as follows:

printLn:
entry (0)
int (0)
loadlocal (2)
ccall ("MLR_printLn")
ret

Note that the value itself is a closure and will have to be allocated on the heap:

label (printLn)
alloc (1)

For functions likeString.sub , which take more than one argument, you will have to build inter-
mediate closures:

sub:
entry (0)
label (sub.inner)
loadlocal (2)
alloc (2)
storelocal (2)
ret

sub.inner:
entry (0)
loadglobal (1)
loadlocal (2)
ccall ("MLR_sub")
storelocal (2)
ret

Here, thesub function creates a closure with its argument (the index). diteinner function
gets the first argument tdLR_sub from its environment and the second from its own argument.

