
CMSC 22610
Winter 2005

Computer Language Implementation Handout 6
March 11, 2005

Runtime functions

1 Introduction

This handout provides further information about the interface between MLR programs and the run-
time system. The VM provides theccall instruction to invoke C functions. C functions expect
their arguments on the stack and return their result on the stack.1 C functions are specified by an
index into the C function table.

2 Runtime functions

The VM provides the following runtime system functions. We present them using the same conven-
tion that we used to present the semantics of the bytecode instruction set.

· · · fid str ccall("MLR_print") =⇒ · · ·
prints the string to the output file specified byfid . The ID 0 is used to specify output to the
standard output.

· · · fid str ccall("MLR_printLn") =⇒ · · ·
prints the string to the output file specified byfid followed by a newline. The ID 0 is used to
specify output to the standard output.

· · · fid ccall("MLR_readLn") =⇒ · · · s
reads a line of input from the input file specified byfid and pushes it on the stack. The ID 0
is used to specify input from the standard output.

· · · str ccall("MLR_openIn") =⇒ · · · fid
opens the named file for input and pushes its file ID on the stack.

· · · str ccall("MLR_openOut") =⇒ · · · fid
opens the named file for output and pushes its file ID on the stack.

· · · str ccall("MLR_length") =⇒ · · · n
pops the stringstr and pushes its length.

· · · lst ccall("MLR_concat") =⇒ · · · str
pops a list of strings and pushes their concatenation.

1The project handout states that “It is the responsibility of the caller to remove the arguments from the stack,” but I
have decided that it is easier to let the runtime functions pop their arguments.

· · · str i ccall("MLR_sub") =⇒ · · · chr
pops a string and an integer index and pushes the integer code of the character at the given
position.

· · · str i n ccall("MLR_substring") =⇒ · · · str
pops a string (str), integer index (i), and integer length (n), and pushes the substring ofstr
that starts at positioni and hasn characters.

· · · i ccall("MLR_intToString") =⇒ · · · str
pops an integer and pushes its string representation.

If any of these functions encounters an error (e.g., index out of bounds), then the VM halts.

3 Wrapping C functions

As part of your bootstrap code, you will need to wrap calls to C functions inside MLR-style func-
tions. For example, the valueIO.printLn names an MLR function that takes a single string
argument and prints it to the standard output. The code for this function is as follows:

printLn:
entry (0)
int (0)
loadlocal (2)
ccall ("MLR_printLn")
ret

Note that the value itself is a closure and will have to be allocated on the heap:

label (printLn)
alloc (1)

For functions likeString.sub , which take more than one argument, you will have to build inter-
mediate closures:

sub:
entry (0)
label (sub.inner)
loadlocal (2)
alloc (2)
storelocal (2)
ret

sub.inner:
entry (0)
loadglobal (1)
loadlocal (2)
ccall ("MLR_sub")
storelocal (2)
ret

Here, thesub function creates a closure with its argument (the index). Thesub.inner function
gets the first argument toMLR_sub from its environment and the second from its own argument.

2

