
CMSC 22610
Winter 2005

Computer Language Implementation Handout 5
March 3

MLR code generation

1 Introduction

This handout describes the code generation API that you will use for Project 4 and gives some hints
about code generation for MLR features.

2 The code generation API

The code generation API is organized into three modules. TheEmit module implements code
streams, which are an abstraction of the generated output file; theLabels module implements
labels for naming code locations, and theInstructions module implements an abstract type of
VM instructions. Each of these modules is described below.

2.1 Code streams

A code stream provides a container to collect the instructions emitted by your code generator. You
create a code Once code generation is complete, you invoke thefinish operation which does an
assembly pass and then writes the binary object file to disk. TheEmit module also provides hooks
for registering string literals and C functions.

2.2 Labels

The Labels module defines an abstract type of label that is used to represent code locations.
TheEmit structure provides thedefineLabel function for associating a label with the current
position in the code stream, and the control-flow instructions take labels as arguments. There is also
an instruction for pushing the value of a label on the stack, which is required to create closures (see
Section 4).

2.3 Instructions

TheInstructions module provides an abstract type that represents VM instructions. For those
instructions that take arguments, it provides constructor functions and for those without arguments,
it provides abstract values.

3 Implementing records

Because MLR supports record polymorphism, your code generator must support a mechanism for
mapping labels to slots. There are a number of different techniques for this problem, we will use
one owed to Didier Ŕemy, which exploits the fact that we have the whole program available to the
compiler. For each record label that appears in the program, assign a unique integer IDidl. Then,
for any record type{ l : τl

l∈L} , find the leastpL, such for anyl1, l2 ∈ L,

idl1 mod pL = idl2 mod pL ⇐⇒ l1 = l2

Assume that the labels ofL are sorted and thatindexL(l) is the index of the labell in the sorted
order (counting from1). We can construct an arrayHL of sizepL + 1, such thatHL[0] = pL and
HL[(idl mod pL) + 1] = indexL(l). Then the representation of a record of type{ l : τl

l∈L} is an
n+1 element arrayr, wherer[0] = HL andr[indexL(l)] holds the value of the field labeled byl.
Note that theHL record is independent of the types of the fields; it only depends on the set of labels.

Using this representation, the VM code for the expression “a.x ” (assuming thata is a local
variable) is

loadlocal (a)
push (0)
select (0)
int (idx)
push (1)
select (0)
mod
index
index

For example, assume that we have a program with labelsx , y , andz , and thatidx = 840, idy =
841, idz = 842. For a record type with labelsL = {x , z}, pL = 3 andHL = [3, indexL(x),−, indexL(z)],
where the value inHL[2] is not associated with a label and does not matter.

To support this implementation strategy for records, you will have to analyze the program to
determine the set of labels and the set of distinct record types that are constructed (record types that
appear in type constraints do not affect the representation).

4 Implementing function closures

Function closures are used to represent MLR function values. Closures are represented by heap-
allocated arrays, where the first element holds the address of the function’s code and the remaining
slots hold the function’s free variables. For example, consider the function

fun add (x : int) (y : int) : int = (x + y)

The add function returns a function when given one argument, so we can think of it as being
equivalent to:

fun add (x : int) : int -> int =
fun add$inner (y : int) : int = (x + y) in add$inner

Thus, the code foradd might look like the following:

2

Label Instruction Comment
add: entry (0)

label (add$inner)
loadlocal (2) pushx
alloc (2) allocate closure
storelocal (2) store result
ret

add$inner: entry (0)
loadglobal (1) push global variablex
loadlocal (2) pushy
add
storelocal (2) store result
ret

In addition to the free variables of a function, a function closure should also include any record
header values used to construct records in the function.

5 Bootstrapping

The VM starts execution with the top of the stack pointing to the command-line arguments and the
PC pointing to the first instruction in the code stream, but it is unlikely that the compiledmain
function will be at that location. Furthermore, you must initialize the pervasive environment (e.g.,
theIO record) and create the closures for the top-level functions. Thus, you should view a program

fun f1 (x : ty) : ty’ = ...
...
fun main (x : string list) : int = ...

as being in a context roughly like

let IO = { ... } in
let String = { ... } in
let Int = { ... } in
...
fun f1 (x : ty) : ty’ = ...
...
fun main (x : string list) : int = ... in

main (args)

The initialization code should also include construction of record headers and the instruction fol-
lowing the call tomain should be ahalt instruction.

6 Instruction encodings

Most instructions in the VM are either one, two, or three bytes long.1 The first byte is consists of
a two-bit length field (bits 6 and 7), and a six-bit opcode field (bits 0-5). The length field encodes

1The one exception if theint instruction, which has a five byte form.

3

the number of extra instruction bytes (i.e., zero for one-byte instructions, one for two-byte instruc-
tions, and two for three-byte instructions). In the case of the two and three byte instructions, the
extra bytes contain immediate data (e.g., the offset of aload instruction), which is stored in 2’s
complement big-endian format.2 Figure 1 gives a list of the instructions and their lengths; note that
some instructions have both one and two or two and three-byte forms. The actual opcodes for the
VM instructions are given in theopcode.sml file, which is part of the sample code.

7 Document history

Mar. 3 Original version.

Mar. 12 Fixed code fragment for record indexing (Section 3).

2The term “big-endian” means that the most significant byte comes first. For example, the number513 is represented
as the byte sequence2, 1.

4

Instruction Length Comment
add , sub , mul , div , mod, neq , equ ,
less , lesseq , not

1

alloc (n) 2 if 0 ≤ n < 256
alloc (n) 3 if 256 ≤ n < 216
select (i) 2 if 0 ≤ i < 256
select (i) 3 if 256 ≤ i < 216
update , index 1
int (n) 2 if −128 ≤ n < 128
int (n) 3 if n < −128 or 128 ≤ n
int (n) 5 if n < −215 or 215 ≤ n
literal (n) 2 if −128 ≤ n < 128
literal (n) 3 if n < −128 or 128 ≤ n
label (n) 2 if −128 ≤ n < 128
label (n) 3 if n < −128 or 128 ≤ n
swap 1
swap(n) 2 0 ≤ n < 256
push (n) 2 0 ≤ n < 256
pop 1
pop (n) 2 0 ≤ n < 256
loadlocal (n) 2 −128 ≤ n < 128
loadlocal (n) 3 if n < −128 or 128 ≤ n
storelocal (n) 2 −128 ≤ n < 128
storelocal (n) 3 if n < −128 or 128 ≤ n
loadglobal (n) 2 n < 256
loadglobal (n) 3 if 256 ≤ n < 216

pushep , popep 1
jmp (n) 2 if −128 ≤ n < 128
jmp (n) 3 if n < −128 or 128 ≤ n
jmpif (n) 2 if −128 ≤ n < 128
jmpif (n) 3 if n < −128 or 128 ≤ n
call (n) 2 if −128 ≤ n < 128
call (n) 3 if n < −128 or 128 ≤ n
entry (n) 2 0 ≤ n < 256
entry (n) 3 if 256 ≤ n < 216

ret , tailcall 1
ccall (i) 2 0 ≤ i < 256
nop , halt 1

Figure 1: VM instruction lengths

5

