
CMSC 22610
Winter 2005

Implementation
of

Computer Languages

Handout 2
January 4, 2005

Project overview

1 Introduction

The project for this course is the implementation of a simple ML-like language, called MLR, that
supports record polymorphism. The project will be broken down into four parts: the lexer, which
converts a stream of input characters intotokens; the parser, which analyses the syntactic structure
of the token stream and produces aparse tree; the type checker, which checks the parse tree for type
correctness; and a simple code generator for interpretation. Each part of the project builds on the
previous parts.

1.1 Project schedule

The following is a tentative schedule for the project assignments.

Assignment date Description Due date
Jan. 6 Lexer Jan. 21
Jan. 20 Parser Jan. 31
Jan. 27 Typechecker Feb. 18
Feb. 17 Code generation and runtime Mar. 11

2 MLR

The syntax and semantics of MLR are similar to Standard ML, but with many simplifications and
one addition. MLR does not have type inference, tuples, datatypes, exceptions, or modules. It
is a strongly typed higher-order language. As does SML, MLR has labeled records, but with the
major difference that a limited form of record subtyping (sometimes called record polymorphism)
is supported.

2.1 Types and values

MLR supports three primitive types of values: booleans, integers, and strings. In addition, MLR
has lists, labeled records, and first-class function values.

2.2 Declarations

An MLR program is a sequence of top-level declarations, which are either type definitions or func-
tion definitions. The last declaration in an MLR program should be a function namedmain that
should take a list of strings as its argument (the command-line arguments) and return an integer
result (0 for okay, non-zero for an error).

2.3 Functions

Functions in MLR are first-class: they may be nested, taken as arguments, and returned as results.
Function definitions may be curried; for example,

fun add (x : int) (y : in) : int = x+y in
val inc : int -> int = inc 1 in

inc (add 1 2)

evaluates to4.

2.4 Expressions

MLR is an expressionlanguage, which means that all computation is done by expressions (there
are no statements). Expressions include let bindings, conditionals, function application, and vari-
ous operations. Of particular interest are expressions used to compute records. For example, the
expression

{ x = 1, y = 2 }

constructs a record with two fields (x andy). Record fields can be selected using the “dot” notation
and modified or extended using thewith construct. For example,

r with { x = 1 }

evaluates to a new record that adds anx field to the record bound tor . If r already has anx field,
then the field is replaced, otherwise the new record has one more field thanr .

3 An example

Here is a simple example of an MLR program.

type salary = { salary : int }
fun salary (x : salary) : int = x.salary
fun isWealthy (x : salary) : bool = (100000 <= salary x)
fun main (args : string list) : int =

let r = { name = "Susan", age = 21, salary = 34000 }
in IO.println (String.btoa isWealthy r)

In this example,IO andString are variables bound to globally defined records, which serve the
role ofmodules.

2

4 MLR syntax

The following is the collected syntax of MLR. We assume the following kinds of terminal symbols:
identifiers, which are used for types (tid), labels (lid), and variables (vid), integer literals (num), and
string literals (str).

Prog
::= TopDecl+

TopDecl
::= type tid = Type

| Function

Type
::= AtomicType-> Type

| AtomicType

AtomicType
::= bool

| int
| string
| tid
| AtomicTypelist
| { RowTypeopt }
| (Type)

RowType
::= lid : Type(, lid : Type)∗

Function
::= fun vid Param+ : Type= Exp

Param
::= (vid : Type)

3

Exp
::= let vid : Type= Exp in Exp

| Functionin Exp
| if Expthen Expelse Exp
| Expwith { RowExp}
| Expandalso Exp
| Exporelse Exp
| Exp== Exp
| Exp<= Exp
| Exp< Exp
| Exp:: Exp
| Exp+ Exp
| Exp- Exp
| Exp* Exp
| Exp/ Exp
| Exp%Exp
| Exp Exp
| - Exp
| not Exp
| isnull Exp
| hd Exp
| tl Exp
| Exp. lid
| true
| false
| num
| str
| vid
| (Exp(; Exp)∗)
| [(Exp(, Exp)∗)opt]
| { RowExpopt }

RowExp
::= lid = Exp(, lid = Exp)∗

4

