The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #4 (08/17/2005)

Computer Science

Name:

Student ID: Lab instructor: Borja Sotomayor

Do not write in this area

1 2 3 4 5 6 7 TOTAL

Maximum possible points: 35

In this lab you will implement a stack data structure, described in class, using the object-
oriented features of C++.

Push Pop

37

42

23
54
17

Page 1 of 5



The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #4 (08/17/2005)

Computer Science

The class declarations are the following (stack.h in the lab files):

class ListNode {
private:
int data;
ListNode *next;

public:
ListNode(int data, ListNode *next);
int getData();
void setData(int data);
ListNode* getNext();
void setNext(ListNode *next);
bT;

class Stack {
private:
ListNode *head;

// Private member functions
void insertHead(int data);
void deleteHead();

public:
// Constructors
Stack();
Stack(int a[], int length);
~Stack();

// Member functions

int pop();

void push(int data);

int peek();

bool isEmpty();

void printContents(ostream &os);

// Operator overload
void operator+(int data);

}i

A stack.cpp file is provided that includes the implementation of all the ListNode member
functions, and of all the Stack private member functions.

Page 2 of 5



The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #4 (08/17/2005)

Computer Science

To test your list implementation, a main.cpp is provided in the lab files. Running this
program with a correct stack implementation should yield the following:

987654321
First element is 9
987654321
Popped element 9
87654321
Popped element 8
7654321
Popped element 7

654321
Popped element 6
54321

Popped element 5
4321

Popped element 4
321

Popped element 3
21

Popped element 2
1

Popped element 1
Stack is empty!
54321

87654321

You should be able to do the following exercises (except the last one) simply by reusing
code from a previous list implementation seen in class. Do not overthink this lab.

Exercise 1 <«<s3 points>>

Implement the default constructor:

Stack();

Exercise 2 <«<s points>>

Implement the following constructor:

Stack(int a[], int length);

This constructor takes the values in array a (of length /ength), and pops them into the
stack (starting with the first element in the array, and ending with the last element)

Page 3 of 5



The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #4 (08/17/2005)

Computer Science

Exercise 3 <<s points>>
Implement the following standard stack operations (described in class):

int pop();
void push(int data);
int peek();

These three functions can assume that the stack is not empty.

Exercise 4 << points>>

Implement the isEmpty member function:

bool isEmpty();
This function return true is the stack is empty, and false otherwise.

Exercise 5 <<2 points>>

Implement the printContents function:

void printContents(ostream &os);

This function must print the contents of the stack starting at the top of the stack and
ending at the bottom of the stack.

Notice how, unlike previous list traversal functions seen in class, this one expects a

parameter of type ostream. This is done so the programmer will be able to specify what
output stream to use (see the main.cpp file for an example).

Page 4 of 5



The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #4 (08/17/2005)

Computer Science

Exercise 6 <<3 points>>
Overload the addition operator:

void operator+(int data);

The addition operator must be overloaded in such a way that the following operation
results in having value 17 popped into stack st:

Stack st;
st + 17;

Exercise 7 <<i5 points>>

You are asked to do some modifications to your stack implementation. Copy all your files
to a new directory called Exercise7 and make your modifications there.

> Rewrite the class declarations in such a way that Stack becomes a friend class of
ListNode, so that the Stack member functions don't have to use get/set methods to
access the data and next member variables of a ListNode object.

> Eliminate the get/set methods from the ListNode class, and modify your Stack
implementation accordingly.

> Overload the << operator in such a way that you can print out the contents of the
stack to an output stream. For example:

Stack s1;

sl.push(5);
sl.push(6);
sl.push(7);

cout << sl1; // Should write “7 6 5"

A main_friend.cpp file is provided to test these modifications. The result of running this
file with your stack implementation should yield the same output shown on page 3.

Page 5 of 5



