The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #3 (08/10/2005)

Computer Science

Name:

Student ID: Lab Instructor: Borja Sotomayor

Do not write in this area

1 2 TOTAL

Maximum possible points: 35

Exercise 1 <5 points>>

You will implement a queue data structure, as described in class. The structure and
function declarations are the following (queue.h in the homework files):

struct ListNode {
int data;
ListNode *next;
bT;

struct Queue {
ListNode *head;
ListNode *tail;
T

// Creates a new queue
void createQueue(Queue &q);

// Enqueues a new element
void enqueue(Queue &q, int data);

// Dequeues a new element
// Assumes queue is non-empty
int dequeue(Queue &q);

// Returns the value of the first element in the queue,
// without dequeuing
int peek(Queue &q);

// Returns true if the queue is empty
bool isEmpty(Queue &q);

// Prints out the contents of the queue
void printQueue(Queue &q);

// Destroys queue
void destroyQueue(Queue &q);

Page 1 of 2



The University of CMSC 15200 — Introduction to Computer Science 2
Chicago Summer Quarter 2005
Department of Lab #3 (08/10/2005)

Computer Science

Don't reinvent the wheel! You should be able to implement this queue data structure
reusing practically all the code from the double-ended list seen in class.

To test your list implementation, a main_queue.cpp is provided in the lab files. Running
this program with a correct queue implementation should yield the following:

123456789
First element is 1
123456789
Dequeued element 1
23456789
Dequeued element 2
3456789
Dequeued element 3
456789
Dequeued element 4
56789

Dequeued element 5
6789

Dequeued element 6
789

Dequeued element 7
89

Dequeued element 8
9

Dequeued element 9
Queue is empty!
123

Queue is empty!

Exercise 2 <<10 points>>
Add the following function to the linked list implementation seen in class (available on

the course website, in the “Files” section):

void append(List &l1, List &l2);

This function will take the contents of /ist2 and append them at the end of /ist1. This
does not mean that you simply have to link the last element of list1 with the first
element of /ist2. You have to copy the contents of /ist2 and place them in the end of
listl1. This means that, for example, if we were to modify the contents of list2 (after
doing an append operation), this will not affect the contents of list1.

Page 2 of 2



