
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

Name:

Student ID: Lab Instructor: Borja Sotomayor

NOTE: The lab session will take place in the Linux machines of the Maclab. This lab
assumes that you know your way around a UNIX system. If you don't, please read the
addendum “Getting Acquainted”. However, take into account that you are free to do the
lab exercises (and homework assignments) on Mac machines.

Compiling C/C++ programs
[This part of the lab will not be graded. Its purpose is to help you get acquainted with
the steps involved in compiling a C/C++ program]

The compiler we will use in this course is the GCC compiler (http://gcc.gnu.org/) , a part
of the GNU project (http://www.gnu.org/). To get acquainted with this compiler, we will
start by writing, compiling, and running the following simple program seen in class:

#include <iostream>
using namespace std;

int main()
{
 cout << "Hello, world!" << endl;
}

Using your favorite editor, type the above code and save it in a file called helloworld.cpp.
We suggest you start creating an organized directory structure in which to place your lab
files. For example, inside your home directory create a cmsc15200 directory, then a labs
directory inside it and, finally, a lab01 directory. So, your helloworld.cpp file would have
the following path:

~/cmsc15200/labs/lab01/helloworld.cpp

Page 1 of 8

Do not write in this area

1 2 3 TOTAL

Maximum possible points: 20 + 2

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

Now, we will compile the program using GCC. In particular, we will use the g++
command (the C++ compiler). We must run g++ like so:

g++ helloworld.cpp -o helloworld

When running g++ notice how we specify the following:

➢ The name of the file we want to compile: helloworld.cpp

➢ The name of the executable we want to create. This is done using the optional “-o”
argument. If we don't specify an executable name, the default would be used
(“a.out”).

Now, try to run the program. To do this, simply type the name of the executable file in
the command line:

./helloworld

You should see the following:

Hello, world!

Now, repeat the above steps for the following program (save this file as convert.cpp):

#include <iostream>
using namespace std;

int main()
{
 float miles, km;
 cout << "Type number of miles: ";
 cin >> miles;
 km = miles * 1.61;
 cout << "Kilometers: " << km << endl;
}

Page 2 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

Exercise 1 <<5 points>>

In an effort to improve relations with metric system countries, the US Government has
embarked itself on an ambitious project to develop software that converts temperatures
from the Fahrenheit scale to the Celsius scale. You must write a C++ program that asks
the user for a Fahrenheit temperature, and then outputs the equivalent Celsius

temperature. Hint: C=F −32⋅5
9

 Hint 2: Here's a couple of values you can use to test

your application: 0ºF = -17.78ºC , 32ºF = 0ºC , 99.5ºF = 37.5ºC

Please enter a temperature in Fahrenheit: 32
32 F = 0 C

Exercise 2 <<10 points>>

To disprove the widespread belief that computers are unable to reason, we have been
asked to develop an application capable of asking the user a set of questions and then
articulating an intelligent response. Our application must ask the user the following
questions:

➢ What is your age?
➢ What is your GPA (Grade Point Average)?

If the age of the user is less than or equal to 14, then the program must output the
following:

You're too young to have a GPA!

If the user's age is between 15 and 18, and the GPA is greater than 3.8, then the
program must output the following:

Wow, you must be gifted!

In all other cases, the program must output:

I have nothing to say about you!

For full credit, your program should check that the data introduced by the user is valid.
In other words, the GPA must be a number between 0.0 and 4.0, and the age must be
greater than 0.

Page 3 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

Exercise 3 <<5 points>>

After conducting several hearings in the US Senate, the US Government has come to the
conclusion that they would ideally like a program that can convert more than one
temperature in a single run. Modify the program from exercise 1 so that after making a
conversion, the user will be asked if he wants to perform another conversion. If the user
answers “Yes”, then the user is asked for another Fahrenheit temperature. If the user
answer “No”, the program will exit.

Please enter a temperature in Fahrenheit: 0
0 F = -17.78 C

Would you like to enter another temperature? Y

Please enter a temperature in Fahrenheit: 32
0 F = 0 C

Would you like to enter another temperature? Y

Please enter a temperature in Fahrenheit: 99.5
0 F = 37.5 C

Would you like to enter another temperature? N

Hint: As we have not seen string manipulation, you should ask the user for a single
character ('Y' or 'N').

Extra credit (2 points): When asking if the user wants to perform another conversion,
check that the character is 'Y', 'y', 'N', or 'n'. If the user introduces any other character,
show an error message and ask him again whether he would like to perform another
conversion.

Page 4 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

Addendum: Getting Acquainted
The purpose of this addendum is to provide you with the bare minimum knowledge
necessary to write and compile a C++ program on a UNIX system. However, working
with a UNIX system is well outside the scope of this course, so pointers to more
complete documents are provided as well. If you are completely new to UNIX systems,
we encourage you to read these documents and consult with your lab instructor if you
have any questions.

Interacting with a UNIX system

UNIX systems in general, and Linux distributions in particular, usually provide users with
two interfaces:

● Command-line interface (or shell): Allows the user to interact with the system
through the use of commands which you must type in using the keyboard. There
are many different types of shells, such as BASH, CSH, TCSH, ...

● Graphical interface: Allows the user to interact with the system through the use of
graphical elements such as windows, buttons, text fields, etc. mainly using the
mouse. Although the taxonomy of graphical interfaces in UNIX can be a bit
complex, most new users will generally interact at first with high-level desktop
environments such as KDE and GNOME, which are similar in many respects to
graphical interfaces in Windows and Mac systems.

If you are new to UNIX, we encourage you to use the KDE desktop environment, which
is very intuitive and easy to use, specially if you have previous experience in Windows
systems. To use KDE, make sure you choose a “KDE Session” before logging in (you can
do this clicking on the “Session” button in the login screen).

However, there will be times when using a shell will be unavoidable (for example, when
compiling a program). You can bring up a console in KDE by choosing “Terminal console”
in the System menu (inside the KDE menu, similar to the Windows “Start” menu).

Text editing

Text editing can be performed using text-interface programs (from a shell) or graphical
programs (from a graphical interface). You are free to use any text editor you want
during the course. Graphical editors (such as kedit, kate, gedit, ...) are easy to use, but
generally lack C/C++ functionality. Text-based editors (vi and emacs) are powerful and

Page 5 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

versatile, but have a greater learning curve. If you want to learn more about vi and
emacs, you can find several interesting links here:

http://people.cs.uchicago.edu/~kaharris/cs152/#TextEdit

The UNIX file system

The UNIX file system, like most modern file systems, provides users a layer of
abstraction over the data contained in storage mediums such as hard disks. In
particular, file systems allow us to think in terms of files and directories. Of special
interest in the UNIX file system is the home directory, which is where we will be able to
place our files and work with them. For the purposes of this course, we will be
unconcerned with other directories in the file system.

The UNIX shell

As mentioned above, the shell will allow us to interact with the system through the use
of commands which you must type in using the keyboard. When we bring up a shell
(either because we are directly using a pure command-line interface or because we have
called one up from a graphical interface), we will be shown a prompt where we can type
in a command. In particular, our prompt will show something like this:

user@machine:~$

For example:

borja@mahogany:~$

This denotes that the current user is borja, logged into machine mahogany, and with the
current directory being the home directory (the tilde character ~ is short for the home
directory). The current directory is an important concept in the shell, as we will generally
refer to files relative to the current directory (this will be explained shortly).

To start tinkering with the command-line, we can run a simple command called fortune
that will present us with a fortune message (akin to the ones found in fortune cookies).
Simply type fortune and press enter to run the command.

user@machine:~$ fortune

You should then see a message printed out. For example:

Page 6 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

Sometimes a cigar is just a cigar.
 -- Sigmund Freud

We can invoke literally hundreds of commands from the command-line. For this course
we will only need a handful of commands which are explained below. For a more
complete text on the command-line, take a look at the following links:

http://support.uchicago.edu/docs/misc/unix/tutorial/

http://people.cs.uchicago.edu/~kaharris/cs152/index.html#IntroUnix

Creating new directories
We can create new directories using the mkdir command. For example, suppose we want
to create a cmsc15200 directory inside our home directory. We will type the following
command:

~$ mkdir cmsc15200

● For simplicity, we are omitting the “user@machine” part.

● The mkdir command, unlike the fortune command, accepts an argument. In
particular, ther argument tells it exactly what directory to create. In general,
arguments are used to pass options to the commands.

Listing files
We can see a listing of files and directories contained in the current directory by running
the ls command.

~$ ls

You should see the following single line:

cmsc15200

The current directory
Previously, we introduced the concept of current directory, and said that we will
generally refer to files relative to the current directory. This is important because there
are many commands that require us to specify a file (e.g. when compiling a program, we
need to specify what C++ source file we want to compile).

Page 7 of 8

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Lab #1 (07/27/2005)

For example, if the current directory is the home directory and the home directory
contains a file named foo.cpp, we would refer to it from the command line simply like
this:

foo.cpp

However, if the file were inside the cmsc15200 directory, we would refer to it like this:

cmsc15200/foo.cpp

Another example: the ls command seen above (without any arguments) assumes that
we want to see the list of files and directories contained in the current directory.

To change the current directory, we need to use the cd command, specifying the new
current directory. For example, suppose we are in the home directory and want to make
cmsc15200 the current directory. We would run cd like so:

~$ cd cmsc15200

The prompt would change to reflect that the current directory has changed:

~/cmsc15200$

Page 8 of 8

