
The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Homework #7 (08/17/2005)
Due: 08/19/2005

Name:

Student ID: Instructor: Borja Sotomayor

In this homework you will implement a Polynomial ADT (Abstract Data Type) using the
object-oriented features of C++. In particular, we will only consider second-order
polynomials:

ax2bxc
The class declaration is the following (poly.h in the homework files):

class Polynomial
{

private:
/* Member variables */
int a, b, c;
/* Static member variable */
static int numPolynomials;

public:
/* Constructors */
Polynomial();
Polynomial(int a, int b, int c);
Polynomial(const Polynomial &p); // Copy constructor

/* Destructor */
~Polynomial();

/* Member functions */
bool hasRealSolution();
double getRealSolution1();
double getRealSolution2();

/* Overloaded operators */
Polynomial& operator=(const Polynomial &p);
Polynomial operator+(const Polynomial &p);
bool operator==(const Polynomial &p);

int operator()(int x);

Page 1 of 4

Do not write in this area

1 2 3 4 5 6 TOTAL

Maximum possible points: 45

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Homework #7 (08/17/2005)
Due: 08/19/2005

/* Friends */
friend ostream& operator<<(ostream &os, const Polynomial &p);

/* Static member function */
static int getNumPolynomials();

};

A poly.cpp file is provided that includes a partial implementation of the constructors, and
the implementation of the static getNumPolynomials() function.

To test your list implementation, a main.cpp is provided in the homework files. Running
this program with a correct implementation should yield the following:

Number of polynomials is 5
p2 and p3 are the same. Good!
p2 and p5 are the same. Good!
p2 and p4 are not the same. Good!
p2 has real solutions x1=3 , x2=-5
p4 has no real solutions.
p2 is 2x^2 + 4x - 30
p2+p3 is 4x^2 + 8x - 60
p2 is 2x^2 + 4x - 30
p5 is 4x^2 + 8x - 60
p2(3) = 0
p2(-5) = 0
p2(0) = -30
Number of polynomials is 4

Exercise 1 <<5 points>>

A partial implementation of these constructors is provided:

Polynomial();
Polynomial(int a, int b, int c);

However, these constructors do not modify the static numPolynomials member variable
(which keeps a count of the number of Polynomial instances created). Modify the
constructors so they will correctly change the value of numPolynomials, and implement
the destructor:

~Polynomial();

Page 2 of 4

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Homework #7 (08/17/2005)
Due: 08/19/2005

Also, you must make sure that the static numPolynomials member variable is correctly
initialized.

Exercise 2 <<5 points>>

Implement the copy constructor:

Polynomial(const Polynomial &p);

Exercise 3 <<10 points>>

Implement the following member functions:

bool hasRealSolution();
double getRealSolution1();
double getRealSolution2();

In these functions, you will consider the polynomial as a quadratic equation (P(x)=0).
hasRealSolution returns true if the equation has a real solution (or two), and false
otherwise. getRealSolution1 and getRealSolution2 assume that a real solution exists, and
return each of the real solutions (if the equation has a unique solution, they return the
same value).

If you only vaguely remember the quadratic formula, you can get up to speed here:
http://en.wikipedia.org/wiki/Quadratic_equation

Extra credit (10 points): Modify these functions to consider all possible solutions (two
complex solutions, one single real solution, two real solutions) and all possible error
conditions (e.g. what if a=0? What if a=b=0? What if a=b=c=0?). You should not do this
by adding more functions (“getComplexSolution1”, ...) but by writing a single function
that returns an error code and two complex numbers (using the ComplexNumber ADT
seen in class).

Exercise 4 <<10 points>>

Overload the following operators:

Polynomial& operator=(const Polynomial &p);
Polynomial operator+(const Polynomial &p);
bool operator==(const Polynomial &p);

Page 3 of 4

The University of
Chicago

Department of
Computer Science

CMSC 15200 – Introduction to Computer Science 2
Summer Quarter 2005

Homework #7 (08/17/2005)
Due: 08/19/2005

Exercise 5 <<10 points>>

Overload the function call operator:

int operator()(int x);

Note: We have not discussed the function call operator in class. You will have to read
about it on your own.

You must overload the function call operator in such a way that using the parentheses
operator on a Polynomial object will return the value of that polynomial when x is equal
to the integer value supplied as a parameter. For example:

Polynomial p(1,2,3);

cout << p(2); // Prints out “11” (Why? ---> 1*2^2 + 2*2 + 3 = 11)

Exercise 6 <<5 points>>

Implement the following friend function:

friend ostream& operator<<(ostream &os, const Polynomial &p);

This function prints out the polynomial to the specified output stream. You must make
sure that you print out the polynomial correctly. Hint: Careful with terms that have a
negative coefficient and terms that have a zero coefficient.

Page 4 of 4

