Not Proofread

CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 21: May 18, 2005

Instructor: László Babai Scribe: Raghav Kulkarni

NOTE: Change in Monday's TA schedule; no change Tuesday and Thursday.

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday 7:30-8:30,

Tuesday and Thursday 5:30-6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Pairwise Independent Random Variables

Homework Problem: If $\exists X_1, \ldots, X_m$ non-constant independent random variables then $|\Omega| \geq 2^m$.

Solution: Consider $(e_1, e_2, \dots, e_m) \in \{+1, -1\}^m$ i.e., $(\forall i)(e_i \in \{+1, -1\})$.

Let A_i be the event that $X_i = x_i$, where x_i is such that $0 < P(X_i = x_i) < 1$.

 $0 < P(A_i) < 1$. For every (e_1, \ldots, e_m) , events $\{A_i^{e_i} : i = 1, \ldots, m\}$ are independent. where $A_i^1 := A_i$ and $A_i^{-1} = \overline{A_i}$ (complement of A_i).

Consider the event $B(e_1, \ldots, e_m) := \bigcap_{i=1}^m A_i^{e_i}$.

 $P(B(e_1,\ldots,e_m))=\prod_{i=1}^m P(A_i^{e_i})$ hence nonzero. Therefore, we have 2^m nonempty events $\{B(e_1,\ldots,e_m):e_i\in\{+1,-1\}\ for\ i=1,\ldots,m\}.$

Exercise 21.1 Show that $\{B(e_1,\ldots,e_m):e_i\in\{+1,-1\}\ for\ i=1,\ldots,m\}$ are 2^m disjoint events.

This shows that $|\Omega| \geq 2^m$.

Problem: If X_1, \ldots, X_m are pairwise independent non-constant random variables then $|\Omega| \geq m+1$.

Solution: Let $X_0 = 1$ be a constant random variable.

Exercise 21.2 X_0, X_1, \ldots, X_m are still pairwise independent.

Claim: X_0, X_1, \dots, X_m are linearly independent in the space $\mathbb{R}^{|\Omega|}$.

 $\dim(\mathbb{R}^{|\Omega|}) = \dim(\mathbb{R}^n) = n = |\Omega|$. Therefore, $n \ge m + 1$.

Proof of the Claim: WLOG $E(X_i) = 0$ for i = 1, ..., m. (Otherwise replace X_i by $X_i - E(X_i)X_0$.)

Exercise 21.3 Show that the events are still pairwise independent.

Define the innner product of random variables X and Y such that $\langle X, Y \rangle = E(XY)$.

Notice that for $i \neq j$ $E(X_iX_j) = E(X_i)E(X_j) = 0$. (independence)

for i=j $E(X_i^2)>0$. $(X_i \text{ are non-constant for } i\geq 1 \text{ and } E(X_0^2)=1$.) Now we prove the linear independence of $\{X_i\}_{i=0}^m$.

Suppose that $\sum_{i=0}^{m} a_1 X_i = 0$. $0 = E(X_j(\sum_{i=0}^{m} a_1 X_i)) = \sum_{i=1}^{m} a_i E(X_i X_j) = a_j E(X_j^2)$. But $E(X_j^2) \neq 0$. Therefore, $a_j = 0$ for j = 0, ..., m.

Exercise 21.4 Show that this inequality is tight for $n=2^k$, i.e., on $|\Omega|=2^k$, we can define $2^k - 1$ pairwise independent non-constant random variables.

Let \mathbb{F} be a field.

Examples of field: \mathbb{R} , \mathbb{C} , \mathbb{Q} .

 \mathbb{F}_p : integers modulo p where p is a prime.

Exercise 21.5 Integers mod m is not a field unless m is a prime, (Hint: If m is not a prime then $(\exists x, y \neq 0)(xy = 0)$.)

Definition: The order of a field is the number of elements that it contains.

Theorem 21.6 (Galois) A finite field of order q exists iff q is a power of a prime. Moreover, for q prime power, \mathbb{F}_q is unique (up to isomorphism).

Example: An n-dimensional vector space over $\mathbb{F} = \mathbb{F}_q$ is defined as $\mathbb{F}^n := \{(a_1, \ldots, a_n) : a_i \in$

Definition: A line in \mathbb{F}^n is $\{v_0 + tv : v_0, v \in \mathbb{F}^n, t \in \mathbb{F}\}.$

The number of points in \mathbb{F}^n is q^n . The number of lines in \mathbb{F}^n is $\frac{q^n(q^n-1)}{q(q-1)}$. (Why?)

Exercise 21.7 $(\forall x \neq y \in \mathbb{F}^n)(\exists \ a \ unique \ line \ through \ x, y).$

CORRECTION: (for lecture 21) A3d (third axiom for possibly degenerate projective planes) $\exists 3 \text{ points not on a line.}$

Proposition:

For a possibly degenerate projective plane $\mathcal{G} = (P, L, I), |P| = |L|$.

Proof of the Proposition: $|P| \leq |L|$ (Fisher's inequality) $|L| \leq |P|$ (duality)

Definition: \mathbb{F}_q^2 with the lines defined as above and with the natural incidence relation is called the affine plane over \mathbb{F}_q .

Constructing the projective plane over \mathbb{F}_q

An affine plane has q^2 points and $q^2 + q$ lines. The number of lines in each parallel class is q. For each parallel class add a point at infinity. The number of new points added is q+1. Add a new line which consists of all the new points at infinity. This will give a projective plane of order q. (Why?) We just proved that for every prime power q, there exists a projective plane of order q.