Not Proofread

CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 20: May 4, 2005

Instructor: László Babai Scribe: Raghav Kulkarni

NOTE: Change in Monday's TA schedule; no change Tuesday and Thursday. TA SCHEDULE: TA sessions are held in Ryerson-255, Monday 7:30-8:30,

Tuesday and Thursday 5:30-6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Finite Projective Planes

In class H_i we consider random variables $\{(\deg(v) \mid G[A] = G_i \text{ for } j = 1, \dots, \frac{n}{2}\}$ where G[A] is the subgraph of G induced on A and $j = 1, \dots, \frac{n}{2}$ are vertices in A.

Exercise 20.1 Finish the proof that the number of different degrees in a graph G on n vertices is $\Omega(\sqrt{n})$ almost always.

Finite projective planes

Definition: The incidence geometry consists of 3 parts. $\mathcal{G} = (P, L, I)$ where P is the set of points, L is the set of lines and $I \subseteq P \times L$ is the incidence relation.

If $(p, \ell) \in I$ then we write $P \longrightarrow \ell$ (p, ℓ) are incident).

If $(p, \ell) \notin I$ then we write $P \not\longrightarrow \ell$ (p, ℓ) are not incident).

Definition: The dual of $\mathcal{G} = (L, P, I)$ is $\mathcal{G}^* = (L, P, I^{-1})$ where $I^{-1} := \{(x, y) : (y, x) \in I\}$.

Definition: A (possibly degenerate) projective plane is an incidence geometry such that

(A1) $(\forall p_1, p_2 \in P)(\exists \ a \ unique \ \ell \in L)(p_1, p_2 \ are \ incident \ on \ell)$

(A2) $(\forall \ell_1 \neq \ell_2 \in L)(\exists \ a \ unique \ p \in P)(p \ incident \ on \ \ell_1, \ell_2)$

Exercise 20.2 Show that in (A2) uniqueness is redundant.

Exercise 20.3 If \mathcal{G} is a possibly degenerate projective plane then so is \mathcal{G}^* . (Hint: A1 is A2.)

(A3) Not all points are on a line, i.e., there exists 4 points such that no 3 are on a line. *Definition:* The *degenerate projective plane* is an incidence geometry satisfying A1, A2 and A3.

Exercise 20.4 If $\mathcal{G} = (P, L, I)$ is a possibly degenerate projective plane the |P| = |L|.

Exercise 20.5 If $\mathcal G$ is a possibly degenerate projective plane and p not incident on ℓ

Exercise 20.6 If \mathcal{G} is a projective plane and $p_1, p_2 \in P$ then $\exists \ell \in L$ such that p_1, p_2 incident on ℓ .

Corollary 20.7 In a projective plane all the points have the same degree. Hence all the lines have the same degree by duality.

Exercise 20.8 Call this canonical degree (n+1). $n = order of \mathcal{G}$.